大多数日常任务都需要同时控制双手。在这里,我们使用从四肢瘫痪参与者的双侧运动和体感皮层记录的多单元活动来展示双手手势的同时分类。使用针对每只手分别训练的分层线性判别模型对尝试的手势进行分类。在一项在线实验中,手势被连续分类并用于控制两个机械臂进行中心向外运动任务。需要保持一只手静止的双手试验产生了最佳表现(70.6%),其次是对称运动试验(50%)和非对称运动试验(22.7%)。我们的结果表明,可以使用两个独立训练的手部模型同时解码双手的手势,但随着双手手势组合的复杂性增加,使用这种方法进行在线控制变得更加困难。这项研究展示了使用双侧皮层内脑机接口恢复双手同时控制的潜力。
随着人工智能(AI)社会应用的推进,人们正在探索将人工智能应用于艺术和设计等创意领域。尤其是,许多研究和作品示例已经表明,人工智能可以通过使用生成对抗网络(GAN)和其他生成模型来生成“逼真”的图像和音乐,就好像它们是人类创造的一样。另一方面,有人可能会认为生成模型所做的只是从训练数据中学习到的统计模式的再现,并质疑它们作为表达的新颖性和独创性。在本文中,我们研究了人工智能和创造力的现状,并提出了一种通过扩展 GAN 框架来创造新颖表达,尤其是音乐表达的方法。通过这些,我们考虑了人工智能将在未来为创造不仅仅是模仿人类创作的表达做出贡献。
[1] Sato, Y.、Henley, EJ、Inoue, K.:“机器人危险控制系统设计的动作链模型”,IEEE Trans. on Reliability,第 39 卷,第 2 期,(1990 年 6 月)。[2] Kawashima, O.、Sato, Y.(2015 年):”
• 儿童障碍性疾病( Childhood Disorder ) :了解自 闭 症( Autism )、注意缺陷多 动 障碍 ( Attention Deficit Hyperactivity Disorder )、唐氏 综 合症( Down Syndrome )、 阅读 障碍 ( Dyslexia )等疾病的症状、成因、治 疗 • 上 瘾 ( Addiction ) : 了解上 瘾 的生理机制; * 导 致上 瘾 的常 见药 品及其引 发 的症状和治 疗 方式, 包括酒精( Alcohol )、尼古丁( Nicotine )、大麻( Marijuana )、 鸦 片( Opiates )、 兴奋剂 ( Psychostimulants )等 • 退行性疾病( Degenerative Disease) :了解阿 兹 海默症( Alzheimer's Disease )、肌萎 缩侧 索硬化 症( Amyotrophic Lateral Sclerosis, ALS )、亨廷 顿综合症( Huntington's Disease )、帕金森症 ( Parkinson's Disease )的症状、成因和治 疗 • 精神疾病( Psychiatry ):了解焦 虑 症( Anxiety Disorders )、妥瑞氏 综 合症( Tourette Syndrome )、抑郁症( Depression )、躁郁症 ( Bipolar Disease )、精神分裂症 ( Schizophrenia )的症状、成因和治 疗 • 脑损伤( Illness and Injury ): 了解 疼痛 ( Pain )、 癫痫 ( Epilepsy )、中 风 ( Stroke )、 * 脑 瘤 ( Brain Tumors )、 * 多 发 性硬化( Multiple Sclerosis )、 * 神 经创伤 ( Neurological Trauma )的 症状、成因和治 疗 方式 四、 脑研究
为任何软件工具,固件或类似的辅助手段提供非歧视性访问,以确保备用电池的全部功能以及在更换期间和之后安装的设备的全部功能; 在制造商,进口商或授权代表的免费访问网站上提供有关设备所有者通知和授权替换电池电池的通知和授权的程序的描述;该程序应允许远程提供通知和授权; 在提供对软件工具,固件或类似辅助手段的访问权限之前,制造商,进口商或授权代表只需收到设备所有者的通知和授权即可。也可以通过所有者的明确书面同意书来提供此类通知和授权; 制造商,进口商或授权代表应在收到请求后的3个工作日内提供对软件工具,固件或类似辅助手段的访问权限,并在适用的情况下进行通知和授权。
致谢:作者承认莱斯特大学临床前研究机构生物医学服务部的帮助和支持,以提供技术支持和对实验动物的照顾。作者要感谢Vaibhav Konanur开发了用于纠正荧光痕迹的分析方法,Leon Lagnado用于初始光度法实验中使用的友善借贷设备,以及Andrew Macaskill和Andrew Macaskill进行有关分析的有用讨论。这项工作由生物技术和生物科学研究委员会资助[授予J.E.M.的BB/M007391/1。],欧洲委员会[授予J.E.M.的GART#631404],Leverhulme Trust [授予#RPG-2017-417 to J.E.M.和J.A-S。]和TromsøResearchFoundation [授予J. E. M.的19-SG-JMCC)。
“马法特微电网”是一个由欧洲区域发展基金资助的研究项目,由留尼汪岛大学的 PIMENT 实验室和 SIDELEC Reunion 合作开展。该项目的主要目的是开发和改进留尼汪岛的智能电网概念。马法特是一个内陆地区,没有连接到主电网。当地政府的主要目标是通过太阳能微电网设施为大约 300 户家庭通电。我们的案例研究为马法特的 3 户家庭提供了一个实际的能源管理系统应用,旨在最大限度地利用光伏能源并延长电池寿命。该项目与马法特的三户家庭密切合作,每户家庭都安装了人机界面。这项工作是一种初步方法,根据用户的接受程度从理论上评估需求侧管理流程的有效性。结果表明,只要用户遵循给出的建议,能源管理系统就可以减少能源浪费并提高太阳能的有效利用率。
在分布式能源部署状况方面,哥伦比亚实施了一项计划,旨在提高人们对能源效率的认识,并要求对电器进行贴标。合理高效利用能源和非传统能源计划 (PROURE) 确实实现了其目标,但并未充分发挥哥伦比亚能源效率机会的潜力。到 2022 年底,太阳能光伏分布式装机容量预计为 103 兆瓦,预计到 2036 年将达到 1,132 兆瓦——年均增长率为 23%,这显然是朝着正确方向迈出的一步 (UPME,2022a)。然而,如果要实现哥伦比亚能源部门雄心勃勃的碳减排目标,还需要做更多的工作来加速该国的能源效率和分布式能源/灵活技术。
能源效率指标是跟踪各种目的能源效率进度的关键(例如,政策制定,监视目标,制定能源预测,制定场景和计划以及基准测试)。本指南适用于专业人士和决策者,描述了能源最终用途数据的选择和良好实践,以及在国家一级的能源效率指标的开发。同时,它也可以用作评估工具,帮助各国/经济来定位其起点,并根据各自的国家利益和优先事项确定适当的目标。此处介绍的路线图涵盖了各个国家的咨询活动的结果,并提出了良好的实践和实践提示。它承认没有单一的解决方案,而是许多可能的途径,具体取决于国家环境和优先事项。路线图是一份战略文档,研究效率指标开发的整个价值链,从最初的数据和指标的需求出现到后来的传播和数据使用阶段,因此对于全球从业人员的开发中来说,这是一种有用的资源。