波浪般的,玻色粒暗物质候选者(如轴和暗光子)可以使用称为卤素菌的微波腔检测到。传统上,卤素由在TM 010模式下运行的可调铜腔组成,但欧姆损失限制了其性能。相比之下,超导射频(SRF)腔可以达到约10 10的质量因子,也许比铜腔好5个数量级,从而导致更敏感的暗物质检测器。在本文中,我们首先得出了吊带镜实验的扫描速率与负载的质量因子Q L成正比,即使腔带宽比暗物质晕线线窄得多。然后,我们使用非偏高的超高质量SRF腔进行了概念验证搜索。我们排除了深色光子暗物质,具有χ> 1的动力学混合强度。5×10 - 16对于M A0¼5的深色光子质量。35μEV,几乎通过一个数量级获得了最深的范围排除在波浪状的深色光子上。
在DAC中反射率的挑战•高压或负载下的钻石,可以吸收紫外线和蓝色的光,从而阻止这些光谱区域。•需要强红色和红外光源或敏感探测器•测量入射辐射强度是一个挑战:不能除去样品•需要极好的光学与光束正常的光束对齐到样品
从而大幅节省房地产和基础设施。此外,紧凑性还会降低给定光束强度的光束存储能量,这是高能、高亮度机器中的一个重要问题。最后,超导性也是通过两个复合过程降低加速器功耗并因此降低运行成本的一种手段:通过使其变得更小(上述紧凑性论点),以及通过降低电磁铁单位长度的功率。超导同步加速器的功耗本质上是低温制冷的功耗,它与机器的周长成比例,而与磁铁中的磁场无关。 LHC 的主要技术要点是研发、工业化生产 1232 个超导偶极子(场强为 8.3 T)、400 个超导四极子(梯度为 223 Tm -1 )和数千个其他超导磁体,这些超导磁体用于校正主场误差、调整束流参数和使束流在高亮度下发生碰撞 [3]。所有这些磁体均由工业制造,能够重复产生正确强度和均匀性的场,精度高达 10 -4 。主偶极子(图 1)具有双孔径,具有相等且相反的场,以便沿平行路径弯曲两束反向旋转的质子或离子束。两组相同的线圈组装在一个通用的机械和磁性结构中,并安装在一个低温恒温器内。这种解决方案在横向空间占用方面既紧凑又高效,因为一个孔径的杂散场由磁轭引导,会对相邻孔径的场产生影响。每个孔径中的线圈都用卢瑟福型 Nb-Ti 电缆缠绕,分为两层,电流密度分级,遵循“cos θ”几何形状。当磁体通电时,巨大的电磁力往往会打开结构,而非磁性奥氏体钢的刚性环会对此作出反应,这些环位于磁性钢轭上。整个组件包含在一个奥氏体不锈钢压力容器中,该容器充当氦气外壳。随着磁场的增加,超导体的临界电流会降低,这限制了它们在高场应用中的使用。这严重限制了众所周知的 Nb-Ti 合金在 4.2 K 的正常沸腾氦气中的使用。更先进的超导体,如 Nb 3 Sn