本文提出将氨基酸改性氧化石墨烯衍生物 (GO-AA) 作为活性材料,用于捕获水介质中的有机污染物并进行电化学检测。草甘膦 (GLY) 是一种存在于许多水体中的除草剂,被选为基准物质,以测试这些材料的电活性有效性,从而为捕获事件提供直接证据。通过环氧环开环反应将 L -赖氨酸、L -精氨酸或 L -蛋氨酸接枝到 GO 表面,促进氨基酸结合并伴随 GO 的部分还原。合成过程导致电荷电阻从 GO 的 8.1 K Ω 降至各种 GO-AA 的 0.8 – 2.1 K Ω,从而支持这些材料在电化学传感中的适用性。所得 GO-赖氨酸、GO-精氨酸和 GO-蛋氨酸用于从水中吸附 GLY。 GO-Lysine 与 GLY 的相互作用最强,1 小时后的去除效率为 76%,大约是工业基准吸附剂颗粒活性炭的两倍。当用作活性材料捕获 GLY 并进行电化学检测时,GO-AA 的性能也优于原始未改性材料。GO-Lysine 表现出最佳灵敏度,即使浓度低至 2 μ g/L 也能识别水中的 GLY。分子动力学模拟证实,这种材料增强的性能可归因于赖氨酸部分和 GLY 之间的氢键和盐桥相互作用,而氢键和盐桥相互作用源于氢键和盐桥相互作用。
这篇文章中的资助信息被错误地理解为“本研究工作由机构基金项目资助,资助编号为 (IFPIP:542-135-1443)。作者非常感谢沙特阿拉伯教育部和阿卜杜勒阿齐兹国王大学 (DSR,吉达,沙特阿拉伯) 提供的技术和资金支持”。
1药理学系,L J大学,L J大学,艾哈迈达巴德382210,印度古吉拉特邦; Dr.Dipa.israni@ljku.edu.in(D.K.I. ); mansi.shah_ljip@ljinstitutes.edu.in(M.S.) 2萨拉斯瓦蒂药学学院药理学和药房实践系,甘地纳加尔382355,印度古吉拉特邦; rrneha2910@gmail.com 3印度古吉拉特邦VADODARA的帕鲁尔大学帕鲁尔大学帕鲁尔大学帕鲁尔大学药理学系391760; sonijhanvi4@gmail.com 4 Shree S. bhupen27@gmail.com 5塞尔帕科恩大学药学学院,泰国纳克恩(Nakhon)病原体73000,6药理学和药房实践系,L。M. M.药学学院,Opp。 古吉拉特大学,纳维兰普拉,艾哈迈达巴德380009,印度古吉拉特邦; mehulchorawala@gmail.com 7 Chiang Mai University,Chiang Mai 50200的药学学院,泰国; supachoke.man@cmu.ac.ac.th 8 of Research Administration,Chiang Mai University,Chiang Mai 50200,泰国 *通信:sudarshan.s@cmu.ac.th(S.S.); chuda.c@cmu.ac.th(C.C.)1药理学系,L J大学,L J大学,艾哈迈达巴德382210,印度古吉拉特邦; Dr.Dipa.israni@ljku.edu.in(D.K.I.); mansi.shah_ljip@ljinstitutes.edu.in(M.S.)2萨拉斯瓦蒂药学学院药理学和药房实践系,甘地纳加尔382355,印度古吉拉特邦; rrneha2910@gmail.com 3印度古吉拉特邦VADODARA的帕鲁尔大学帕鲁尔大学帕鲁尔大学帕鲁尔大学药理学系391760; sonijhanvi4@gmail.com 4 Shree S. bhupen27@gmail.com 5塞尔帕科恩大学药学学院,泰国纳克恩(Nakhon)病原体73000,6药理学和药房实践系,L。M. M.药学学院,Opp。古吉拉特大学,纳维兰普拉,艾哈迈达巴德380009,印度古吉拉特邦; mehulchorawala@gmail.com 7 Chiang Mai University,Chiang Mai 50200的药学学院,泰国; supachoke.man@cmu.ac.ac.th 8 of Research Administration,Chiang Mai University,Chiang Mai 50200,泰国 *通信:sudarshan.s@cmu.ac.th(S.S.); chuda.c@cmu.ac.th(C.C.)古吉拉特大学,纳维兰普拉,艾哈迈达巴德380009,印度古吉拉特邦; mehulchorawala@gmail.com 7 Chiang Mai University,Chiang Mai 50200的药学学院,泰国; supachoke.man@cmu.ac.ac.th 8 of Research Administration,Chiang Mai University,Chiang Mai 50200,泰国 *通信:sudarshan.s@cmu.ac.th(S.S.); chuda.c@cmu.ac.th(C.C.)
b“总结大脑的纯粹复杂性使我们了解其在健康和疾病中功能的细胞和分子机制的能力。全基因组关联研究发现了与特定神经系统型和疾病相关的遗传变异。此外,单细胞转录组学提供了特定脑细胞类型及其在疾病期间发生的变化的分子描述。尽管这些方法为理解遗传变异如何导致大脑的功能变化提供了巨大的飞跃,但它们没有建立分子机制。为了满足这种需求,我们开发了一个3D共培养系统,称为IASEMBLOI(诱导的多线组件),该系统能够快速生成同质的神经元-GLIA球体。我们用免疫组织化学和单细胞转录组学表征了这些Iassembloid,并将它们与大规模CRISPRI的筛选结合在一起。在我们的第一个应用中,我们询问神经胶质细胞和神经元细胞如何相互作用以控制神经元死亡和生存。我们的基于CRISPRI的筛选确定GSK3 \ XCE \ XB2在存在高神经元活性引起的活性氧的存在下抑制了保护性NRF2介导的氧化应激反应,这先前在2D单一神经元筛选中没有发现。我们还应用平台来研究ApoE-4的作用,APOE-4是阿尔茨海默氏病的风险变体,对神经元生存的影响。与APOE-3-表达星形胶质细胞相比,表达APOE-4表达星形胶质细胞可能会促进更多的神经元活性。该平台扩展了工具箱,以无偏鉴定大脑健康和疾病中细胞 - 细胞相互作用的机制。 “
心肌缺血 - 再灌注损伤(MIRI)是一个关键问题,在心脏缺血事件后恢复血流时会出现。在此过程中,过量的活性氧(ROS)产生加剧了细胞损伤并损害心脏功能。最近的治疗策略重点是利用ROS微环境设计有针对性的药物输送系统。ROS-响应性生物材料已成为有前途的候选人,提供了增强的治疗性效率,并减少了全身性不良影响。本综述研究了在心肌缺血 - 重新灌注过程中ROS过量生产的机制,并总结了MIRI治疗中ROS-响应性生物材料的显着进步。我们讨论了各种化学策略,以对这些材料赋予ROS敏感性,并强调ROS诱导的溶解度开关和降解机制。此外,我们重点介绍了各种ROS响应性治疗平台,例如纳米颗粒和水凝胶,及其在MIRI的药物输送方面具有独特的优势。临床前研究表明,在动物模型中审查了这些材料在缓解MIRI中的效率,并及其作用机理和潜在的临床意义。我们还解决了将这些基于生物材料的治疗疗法转化为临床实践的挑战和未来前景,以改善Miri Management和心脏结局。本综述将为研究新型治疗策略的研究人员和临床医生提供宝贵的见解。
b“总结大脑的纯粹复杂性使我们了解其在健康和疾病中功能的细胞和分子机制的能力。全基因组关联研究发现了与特定神经系统型和疾病相关的遗传变异。此外,单细胞转录组学提供了特定脑细胞类型及其在疾病期间发生的变化的分子描述。尽管这些方法为理解遗传变异如何导致大脑的功能变化提供了巨大的飞跃,但它们没有建立分子机制。为了满足这种需求,我们开发了一个3D共培养系统,称为IASEMBLOI(诱导的多线组件),该系统能够快速生成同质的神经元-GLIA球体。我们用免疫组织化学和单细胞转录组学表征了这些Iassembloid,并将它们与大规模CRISPRI的筛选结合在一起。在我们的第一个应用中,我们询问神经胶质细胞和神经元细胞如何相互作用以控制神经元死亡和生存。我们的基于CRISPRI的筛选确定GSK3 \ XCE \ XB2在存在高神经元活性引起的活性氧的存在下抑制了保护性NRF2介导的氧化应激反应,这先前在2D单一神经元筛选中没有发现。我们还应用平台来研究ApoE-4的作用,APOE-4是阿尔茨海默氏病的风险变体,对神经元生存的影响。与APOE-3-表达星形胶质细胞相比,表达APOE-4表达星形胶质细胞可能会促进更多的神经元活性。该平台扩展了工具箱,以无偏鉴定大脑健康和疾病中细胞 - 细胞相互作用的机制。关键词功能基因组学,神经元 - 糖共培养,必需基因,单核RNA测序,CRISPR干扰,作物seq,氧化应激,GSK3B,NFE2L2,NFE2L2,神经元活动
后印本:Kulpa-Koterwa A.、Ryl J.、Górnicka K.、Niedziałkowski P.,基于外链中含有 1,4,7,10-四氮杂环十二烷的磁性氧化铁的新型纳米吸附剂(Fe 3 O 4 @SiO 2 -cyclen)用于吸附和去除选定的重金属离子 Cd 2+ 、Pb 2+ 、Cu 2+ ,Journal of Molecular Liquids,第 368 卷,B 部分(2022 年),120710,DOI:10.1016/j.molliq.2022.120710 © 2022。此手稿版本根据 CC-BY-NC-ND 4.0 许可证提供 https://creativecommons.org/licenses/by-nc-nd/4.0/
短暂性胚胎缺氧后的致致膜性和活性氧:实验性和临床性含量,重点关注具有人类流产潜力的药物。活性氧(ROS)可能对胚胎组织有害。不良胚胎效应取决于低氧事件的严重程度和持续时间以及在组织中发生缺氧期间。胚胎中最近形成的动脉的血管内皮极容易受到ROS损伤。内皮损害导致器官的血管破坏,出血和玛尔德开发,通常应该由动脉提供。ROS还可以诱导胚胎中的不规则心律,从而导致肾小管心脏开始跳动时的血流和压力改变。在心脏病发生过程中,血流和压力的这种改变会导致多种心血管缺陷,例如转置和心室间隔缺陷。本文的一个目的是审查和比较动物研究中各种起源的瞬态胚胎缺氧引起的畸形模式,这些畸形与瞬态胚胎缺氧在人类怀孕中由于流产失败而导致的畸形。结果表明,瞬时缺氧和具有引起人类流产失败的化合物,例如米索前列醇和激素妊娠试验(HPT),如Primodos,与类似的变性频谱有关。频谱包括减少肢体,心血管和中枢神经系统缺陷。米索前列醇和HPT的缺氧相关的致畸性,可能是子宫收缩的继发性,并在器官发生过程中构成子宫内术/胚胎血管的含量。
摘要:成人腹前脑中的多巴胺信号传导调节行为,压力反应和记忆形成以及神经发育中调节神经分化和细胞迁移。多巴胺水平过多,包括在子宫内和成年人中使用可卡因的水平,可能会导致长期不良后果。稳态变化和病理变化的基础机制尚不清楚,部分原因是多巴胺引起的各种细胞反应以及对动物模型的依赖,这些动物模型在多巴胺信号传导中表现出特定于物种的差异。在这项研究中,我们使用了西安– tanaka的人类源自腹前脑前脑器官模型,并表征了它们对可卡因或多巴胺的反应。我们探索多巴胺或可卡因的剂量方案,以模拟急性或慢性暴露。然后,我们使用钙成像,cAMP成像和大量RNA测量来测量对可卡因或多巴胺暴露的反应。,除了暴露后的氧化应激指标外,我们还观察到炎症途径的上调。使用活性氧(ROS)的抑制剂,我们显示ROS对于可卡因暴露的多种转录反应是必需的。这些结果突出了新的反应途径,并验证了脑器官的潜力,作为研究大脑中复杂生物学过程的体外人类模型。