一类被称为活性氧 (ROS) 的生物活性极高的分子已在癌症中得到广泛研究。它们在癌症的发病机制中起着重要作用。考虑到最近的进展,ROS 在癌症生物学中的意义是一个不断发展的领域;对其产生的见解,ROS 的基因组和表观遗传调节剂的作用,以前被认为是一种化学过程,与细胞死亡途径相互关联 - 细胞凋亡、铁死亡、坏死性凋亡和自噬已被探索,以寻找将 ROS 平衡转向癌细胞死亡的新靶点。ROS 是一种信号转导器,在低至中等浓度下诱导血管生成、侵袭、细胞迁移和增殖,被认为是一系列生物活动的正常副产物。尽管人们知道 ROS 自古以来就存在于肿瘤学领域,但已知过量的 ROS 会损害细胞器、膜、脂质、蛋白质和核酸,导致细胞死亡。在过去的二十年中,许多研究表明,调节 ROS 水平的免疫疗法和其他抗癌疗法在体外和体内均具有良好的效果。本综述还探讨了基于 ROS 生成或抑制以破坏细胞氧化应激平衡的癌症治疗干预的最新目标。例子包括代谢靶点、生物标志物的靶向治疗、天然提取物和保健食品以及在纳米医学领域开发的靶点。在本综述中,我们介绍了可用于通过调节 ROS 水平来制定针对癌症的治疗计划的分子途径,特别是当前的发展和在临床环境中有效实施 ROS 介导疗法的潜在前景。正如本综述所强调的那样,与细胞凋亡(尤其是铁死亡)的复杂相互作用及其在表观基因组学和修饰中的作用的最新进展是一种新的范例,而不仅仅是 ROS 的机械作用。保健食品对它们的抑制
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。它是制作
背景:国际空间站(ISS)证明了人类在太空中的成就 - 19个口粮。尽管其高度控制的环境,其特征是微重力,CO 2水平升高和20个太阳辐射,但微生物却占据了独特的利基。这些微生物居民在影响21的船上的健康和福祉方面发挥了重要作用。在我们的研究中特别感兴趣的一种微生物是22个肠杆菌Bugandensis,主要在包括人类胃肠道在内的临床标本中发现,还有23个据报道具有致病性状,导致了很多感染。24结果:与地球对应物不同,ISS E. bugandensis菌株表现出了抗性机制,可在Eskape病原体组中对其进行分类,这是一群因其对抗菌治疗的强大26耐药性而识别的病原体。在两年的微生物跟踪1个任务中,从ISS内的各个位置隔离了12个多药物27耐药e.bugandensis。与陆地菌株相比,我们已经进行了一项全面的28项研究,以了解ISS衍生的E. bugandensis的基因组复杂性,其中29次敏锐地关注与临床感染相关的人。我们揭示了关键基因的进化轨迹,尤其是那些有助于功能适应和潜在抗菌耐药性的轨迹。我们研究的假设中心31是,与地球上任何不同的空间环境应力的奇异性质可能驱动这些基因组适应。44扩展了我们的调查,随着时间的推移,我们精心绘制了整个ISS的bugandensis的患病率和33个分布。这种时间分析提供了对空间中Bugandensis的持续性,34个继承和潜在殖民的潜在模式的见解。此外,通过利用先进的35种分析技术(包括代谢建模),我们跨越了多个任务和空间位置的ISS中的36 E. bugandensis,探究了与36 E. bugandensis一起研究。这种探索揭示了复杂的微生物37相互作用,为ISS内的微生物生态系统动力学提供了一个窗口。38结论:我们的综合分析不仅阐明了这些相互作用的雕刻微生物潜水器的方式-39个性,而且还阐明了可能有助于在40 ISS环境中进行主导和继承的因素。这些发现的含义是两个方面。首先,他们阐明了微生物行为,41适应和在极端孤立的环境中的进化。其次,他们强调了对强大的预防措施的需求,从而通过减轻与潜在的致病43威胁相关的风险来确保宇航员的健康和安全。
1俄罗斯科学院普罗夫洛夫通用物理研究所,俄罗斯莫斯科119991 Vavilova St. 38; avsimakin@gmail.com(A.V.S.); Aleksej.baryshev@gmail.com(A.S.B.); pobedonoscevroman@rambler.ru(R.V.P.); inyabaymler@yandex.ru(i.v.b。); rebezov@yandex.ru(M.B.R.); rusa@kapella.gpi.ru(R.M.S.); astashev@yandex.ru(M.E.A。); dikovskayaao@gmail.com(A.O.D。); bronkos627@gmail.com(e.a.m.); v.kozlov@hotmail.com(V.A.K.); nbunkin@mail.ru(n.f.b。); iwe88@rambler.ru(v.e.i。); kuder_1996@mail.ru(k.o.a.); voronov@lst.gpi.ru(V.V.V.); shafeev@kapella.gpi.ru(G.A.S.)2俄罗斯科学院植物病理学研究所俄罗斯科学研究所,143050俄罗斯大维利齐米; cmakp@mail.ru(M.A.S.); kalinitch@mail.ru(V.P.K.)3尼兹尼·诺夫哥罗德州立大学生物学与生物医学研究所,603022尼兹尼·诺夫哥罗德,俄罗斯,俄罗斯4号州立辐射医学和保护国家关键实验室,放射学和跨学科科学学院(RAD-X)苏州215123,中国; gaomy@iccas.ac.cn(M.G.); liruibin@suda.edu.cn(r.l.)5,105005俄罗斯莫斯科7 A.A. Baikov冶金与材料科学研究所(IMET RAS),俄罗斯科学院,莱宁斯基潜在客户,49,119334,俄罗斯莫斯科; kolmakov@imet.ac.ru(A.G.K.); 79031927386@yandex.ru(M.A.K.)5俄罗斯科学院的细胞生物物理研究所,联邦研究中心,“俄罗斯科学学院的Push-Chino科学研究中心”,Institutskaya St.,3,142290 sharapov.mars@gmail.com 6鲍曼莫斯科州立技术大学基础科学系,2-ND Baumanskaya Str。8俄罗斯科学院理论与实验生物物理学研究所,俄罗斯街3号,142290,俄罗斯Pushchino; bruskov_vi@rambler.ru 9南俄罗斯土壤生育研究所,346493波斯安诺夫卡,俄罗斯10个国家纳米技术中心(Nanotec)国家科学技术发展局(NSTDA),111,111,Phahonyotin Rd,Klong Luang 12120,Thailand; nuttaporn@nanotec.or.th *通信:s_makariy@rambler.ru
气孔防御对于防止病原体进入和进一步定植的植物很重要。质外塑性活性氧(ROS)在激活细菌后激活气孔闭合方面起着重要作用。然而,下游事件,尤其是对警卫细胞中胞质氢(H 2 O 2)的影响的因素,对警卫细胞中的特征很少了解。我们使用拟南芥在气孔免疫反应期间使用涉及倍增运动ROS爆发的拟南芥突变体来研究H 2 O 2传感器ROGFP2-ORP1和ROS特异性荧光素探针。出乎意料的是,NADPH氧化酶突变体RBOHF通过警卫细胞中与病原体相关的分子模式(PAMP)对ROGFP2-ORP1的过度氧化。但是,气孔闭合与高ROGFP2-ORP1氧化没有密切相关。相比之下,RBOHF对于通过基于荧光素的探针在后卫细胞中测得的PAMP介导的ROS产生是必需的。与以前的报道不同,RBOHF突变体(而不是RBOHD)在小型触发的气孔闭合中受到了损害,导致对细菌的气孔防御性缺陷。有趣的是,RBOHF还参与了PAMP诱导的凋亡碱化化。在H 2 O 2介导的气孔闭合100μm中,RBOHF突变体也部分受损,而较高的H 2 O 2浓度最高为1 m m,并未促进野生型植物中的气孔闭合。我们的结果提供了有关塑料和胞质ROS动力学之间相互作用的新见解,并突出了RBOHF在植物免疫中的重要性。
在糖尿病中,血小板被多种刺激激活,活化的血小板产生活性氧(ROS)诱导血小板聚集,进而形成血栓,导致各种心血管疾病。因此,检测血小板中的ROS扰动可为诊断糖尿病提供线索。在本文中,报道了基于铱的自毁探针(1a-1c)通过光致发光(PL)和电化学发光(ECL)监测血液中ROS的扰动。探针是基于通过氨基甲酸酯部分与苯基硼酸频哪醇酯结合的铱配合物设计的。三种探针在苄基连接体的邻位上含有不同的吸电子基团;因此,它们对ROS的反应性预计会有细微的差异。正如预期的那样,这三种探针对过氧化氢 (H 2 O 2 ) 的 PL 变化最为明显,但它们对 ROS 的响应模式却截然不同。利用这种不同的 ROS 响应模式,建立了一种结合 PL 和 ECL 响应的鉴别策略,并成功证明了对糖尿病大鼠和对照大鼠血小板的鉴别。
胞外自身 DNA (esDNA) 抑制生长的能力正受到越来越多的研究关注,因为这可用于多种目的,包括开发特定的生物除草剂。虽然已经对几种双子叶植物的抑制作用进行了研究,但是对其在单子叶植物中的作用和随后的信号传导过程知之甚少。在本文中,我们测量了水稻 (Oryza sativa L.) 的生长情况,计算了侧根和冠根的数量,确定了绿度指数,量化了 O 2 .- 和 H 2 O 2 的产生,并确定了编码抗氧化酶 (SOD s 和 CAT s) 基因的表达,水稻是单子叶植物的模型植物。发芽 7 天后,水稻根系暴露于 0、75 和 150 µg cm -3 的 esDNA。结果发现,抑制作用与 esDNA 浓度呈负相关,这可以通过主根的长度来判断。有趣的是,这种负面影响只在直接暴露的器官(根部)中观察到,而在整个幼苗的芽长或鲜重中没有观察到。不同处理组的叶片绿度指数百分比和冠根和侧根数量也相似。然而,esDNA 暴露于根部会增加根部 O 2 .- 和 H 2 O 2 的产生。在分子水平上,这种反应的特点是抗氧化基因 SOD 3、CAT B 和 CAT C 表达减少。这些发现表明 esDNA 会局部抑制水稻生长,例如在经过处理的根部,这种反应包括增加 ROS 的产生和抑制抗氧化剂。这项研究可以作为确定浓度和暴露时间组合的基础,以显著抑制单子叶杂草的总生长,同时将对作物的影响降至最低。
骨质疏松症是一种代谢性骨病,它影响性别,并且是骨折最常见的原因。骨质疏松疗法主要抑制破骨细胞活性,很少旨在触发新的骨骼生长,从而经常引起严重的全身性不良反应。在生理上,细胞内氧化还原状态取决于促氧化剂,氧化剂(活性氧,ROS)和抗氧化剂的比率。ROS是骨质疏松症中氧化应激的关键因素,因为氧化还原状态的变化负责动态骨重塑和骨再生。ROS代和抗氧化剂系统中的失衡在骨质疏松症,刺激成骨细胞和骨细胞对破骨细胞生成的发病机理中起关键作用。ROS可防止矿化和成骨,从而导致骨质流失的增加。另外,抗氧化剂直接或间接地有助于激活成骨细胞,从而导致分化和矿化,从而减少骨质质外生的发生。由于免疫反应性的不可预测性和报告的不良反应,尽管药物对氧化应激产生了有希望的结果,但针对破骨细胞的临床治疗的治疗受到限制。纳米技术介导的干预措施比再生医学的其他治疗方式获得了显着的优势。纳米疗法方法通过增强其成骨和抗跨性栓塞潜力来影响纳米颗粒的抗氧化特性以触发骨骼修复,从而影响生物相容性,机械性能和骨诱导率。因此,利用纳米疗法来维持成骨细胞和破骨细胞的分化和增殖是典型的。
摘要 简介:由于药物的副作用,纳米级药物递送系统的发展带来了药物治疗的显著改善,因为药物的药代动力学发生了变化,毒性降低,药物的半衰期增加。本研究旨在合成载有他莫昔芬 (TMX) 的 L-赖氨酸包覆磁性氧化铁纳米粒子作为纳米载体,以研究其对 MCF-7 癌细胞的细胞毒性和抗癌特性。方法:合成磁性 Fe 3 O 4 纳米粒子并用 L-赖氨酸 (F-Lys NPs) 包覆。然后,将 TMX 负载到这些 NP 上。通过 X 射线衍射 (XRD)、傅里叶变换红外光谱 (FTIR)、扫描电子显微镜 (SEM)、透射电子显微镜 (TEM)、动态光散射 (DLS)、差示扫描量热法 (DSC)、振动样品磁强计 (VSM) 和热重分析 (TGA) 评估合成纳米粒子 (F-Lys-TMX NPs) 的特性。在 pH 5.8 和 pH 7.4 下分析药物释放。将 MCF-7 细胞暴露于 F-Lys-TMX NPs、F-Lys NPs 和 TMX 24、48 和 72 小时。为了评估设计的纳米粒子的细胞毒潜力,进行了 MTT 和细胞凋亡测定、实时 PCR 和细胞周期分析。结果:F-Lys-TMX NPs 具有球形形态,尺寸范围为 9 至 30 nm。通过增加纳米粒子浓度和处理时间,与 TMX 相比,在 F-Lys-TMX NPs 处理的细胞中观察到更多的细胞增殖抑制和凋亡诱导。ERBB2、细胞周期蛋白 D1 和细胞周期蛋白 E 基因的表达水平下调,而 caspase-3 和 caspase-9 基因的表达水平上调。药物释放研究表明,纳米粒子的释放缓慢且受控,受 pH 依赖。细胞周期分析表明,F-Lys-TMX NPs 可以将细胞停滞在 G0/G1 期。结论:研究结果表明,与 TMX 相比,F-Lys-TMX NPs 更有效,并且具有抑制细胞增殖和诱导凋亡的潜力。因此,F-Lys-TMX NPs 可被视为针对 MCF-7 乳腺癌细胞的抗癌剂。
摘要。癌症仍然是全球第二大死亡原因。目前的研究重点是寻找新的抗癌疗法并阐明其作用机制。细胞氧化还原平衡是新疗法的一个有希望的目标,因为癌细胞由于代谢亢进和遗传不稳定而已经具有升高的氧化剂水平。尽管自由基积极参与重要的细胞信号通路,但它们也与某些疾病有关,包括癌症。本综述的目的是强调氧化应激在抗癌剂作用机制中的作用。正常细胞和癌细胞之间的细胞氧化还原平衡差异被讨论为潜在的抗癌靶点,以及可能改变氧化还原状态的各种已批准或实验药物的例子。这些药物与它们的促氧化或抗氧化机制有关,目的是强调这些机制在抗癌药物整体疗效中的重要性。