摘要 - 植物材料对行星科学,建筑和制造业中许多机器人任务的关键兴趣。但是,颗粒材料的动力学很复杂,并且通常在计算上非常昂贵。我们提出了一组方法和一个用于快速模拟图形处理单元(GPU)的颗粒材料的系统,并表明该模拟足够快,可以通过增强学习算法进行基础培训,目前需要许多动力学样本才能实现可接受的性能。我们的方法模型使用隐式时间播放方法进行多体刚性接触的颗粒材料动力学,以及算法技术,用于在粒子对和任意形成的刚体之间和任意形状的刚体之间的有效并行碰撞检测,以及用于最小化Warp Divergence的编程技术,以最大程度地构建单层构造(构建多项)。我们在针对机器人任务的几个环境上展示了我们的仿真系统,并将模拟器作为开源工具发布。
建筑性能模拟是使用基于计算机的数学模型并应用基本物理原理和工程技术来复制和预测建筑性能的领域。建筑性能模拟是一个蓬勃发展的领域,得到了大量研究和开发,并且在实践中的应用也日益广泛。然而,建筑模拟并非凭空而来。更广泛的建筑领域中还有其他数字化发展也正在获得关注和关注,例如数字孪生、信息物理系统、人工智能和机器学习、物联网和数据挖掘方面的工作和进展。这些其他领域与传统的建筑性能模拟观点部分重叠,部分竞争。信息技术和数字世界的变化越来越快。作为通用发展的先行者,快速浏览埃森哲和 Gartner 等领先 IT 咨询公司的技术简介,就会发现各种相互关联的数字概念和主题正在迅速涌现,例如数字孪生、人工智能工程、自主系统等 [1,2]。这些 IT 主题通常会延迟渗透到建筑科学领域。例如,数字孪生这个术语由 Grieves 于 2003 年创造 [3] ,但直到 2017 年左右才出现在建筑性能文献中 [4] 。同样,信息物理系统的一般概念出现于 2006 年 [5] ,但直到 2015 年才过渡到建筑性能领域 [6] 。同行评审的科学出版物数量趋势