由于运载火箭的运载能力通常超过主要客户的要求,因此在纳入次级小型航天器时,通常需要考虑质量、体积和其他性能裕度。小型航天器有机会利用这种剩余能力,实现更具成本效益的太空飞行。适配器和分配器市场规模庞大,可在现有发射器上紧凑地容纳多个小型航天器。这些技术为发射器提供了结构连接以及部署机制。这种方法被称为“拼车”,仍然是将小型航天器送入轨道的主要方式。术语“拼车”和“托管有效载荷”有时可以互换使用,但它们之间存在明显而微妙的差异;托管有效载荷服务为共享平台上的有效载荷提供进入预定轨道的空间,而拼车服务为集成到运载火箭或分离系统上的专用航天器提供空间。有关托管有效载荷的更多信息,建议读者阅读本报告的完整航天器平台章节。
由于运载火箭的运载能力通常超过主要航天器的要求,因此通常有足够的质量、体积和其他性能裕度来容纳次级小型航天器。小型卫星可以利用这种剩余容量,以经济高效的方式将多个小型航天器运送到太空。适配器和分配器市场规模庞大,可以紧凑地将多个小型航天器安置在现有的发射器上。这些技术为发射器和部署机制提供了结构连接。这种方法被称为“拼车”,仍然是将小型航天器送入轨道的主要方式。术语“拼车”和“托管有效载荷”有时可以互换使用,但它们之间存在明显而微妙的差异;托管有效载荷服务为共享平台上的有效载荷提供进入预定轨道的空间,而拼车服务为集成到运载火箭或分离系统上的专用航天器提供空间。有关托管有效载荷的更多信息,建议读者阅读本报告的完整航天器平台章节。
3.3.6.4 有效载荷热调节 ...................................... 25 太空基 OTV ...................................................... 27 3.4.1 空间站运行和支持约束 ...................................... 27 3.4.1.1 机组人员支持 ........................................ 27 3.4.1.2 功耗 ...................................................... 27 3.4.1.3 质量考虑 ................................................ 27 3.4.1.4 地面通信 ................................................ 27 3.4.1.5 舱外活动/自动维护和保养 ........................ 27 3.4.2 OMV 对 OTV 的支持 ........................................ 27 3.4.2.1 发射 ...................................................... 27 3.4.2.2 回收 ...................................................... 27 3.4.2.3 推进剂补给 ................................................ 28 3.4.2.4 推进剂排空 ................................................ 28 3.4.2.5 OMV 接口 ...................................... 28 3.4.2.6 OMV 在轨服务 ...................................... 28 3.4.3 返回 OTV 轨道包络 ...................................... 28 3.4.3.1 STS 包络 ...................................... 28 3.4.3.2 空间站轨道包络 ...................................... 28 OTV 设计 ...................................................... 31 3.5.1 性能裕度 ................................................ 31 3.5.2 设计裕度 ................................................ 32 3.5.3 可靠性 ................................................ 32 3.5.4 冗余 ................................................ 32 3.5.5 人员评级 ................................................ 32 3.5.6 子系统设计标准 ........................................ 32 3.5.6.1 结构 ................................................ 32 3.5.8.1.1 疲劳......................................... 32 3.5.6.1.2 设计安全系数 ...................................... 33 3.5.6.1.3 验证试验 .............................................. 33 3.5.6.1.4 极限安全系数应用 ........................ 33 3.5.6.1.5 组合载荷 ...... ................................. 34 3.5.6.1.6 极限载荷 ...................................... 34 3.5.6.1.7 允许的机械性能 ........................ 35 3.5.6.1.8 气动弹性 ...................................... 35 3.5.6.1.9 地面处理约束 ...................................... 35 3.5.6.1.10 蒙皮壁板屈曲 ...................................... 35 3.5.6.1.11 应力腐蚀 ...................................... 35 3.5.6.1.12 抗损伤 ...................................... 35 3.5.5.1.13 错位和公差 ...................................... 35 3.5.6.1.14 断裂控制.., ...................................... 36 3.5.6.2 气动制动子系统设计标准 ............................. 36 3.5.6.3 推进 ...................................... 36 3.5.6.3.1 主推进系统 ................................ 36 3.5.6.3.1.1 火箭发动机 ................................ 36 3.5.6.3.1.2 主推进系统推进剂储存和输送系统 ........................ 36
带宽需求持续增长 不断增长的带宽消耗需求继续对全球数据通信行业构成挑战。随着 400G 收发器出货量在 2021 年及以后大幅扩大,800G 光器件已计划在 2022 年上市。端口速度的加速周转以及链路预算的减少,导致半导体和光电子厂商不断面临压力,需要以极具竞争力的价格提供可靠的技术。在一个以成本和性能之间的平衡为主导的领域,光纤安装的质量至关重要。 链路余量可节省成本 从 100G 到 400G+ 生态系统的过渡带来了新的复杂性。现代数据通信光器件在设计上会产生高误码率,这意味着 FEC(前向纠错)编码方案对于维持稳定的连接必不可少 1 。由于 PAM4 等先进调制技术对光学元件性能提出了更严格的要求,光损耗预算也比以往任何时候都低。因此,网络运营商必须寻求高性能光纤解决方案,例如 Legrand Quantum 2 光纤解决方案,以尽可能多地利用光学余量。有了卓越的光纤基础设施,用户就可以寻求更经济高效的收发器来适应他们的网络环境。这为 DR-Lite 等性能轻松、价格具有竞争力的标准铺平了道路。优化网络支出确保高容量网络高效运行已经是一项昂贵而复杂的操作,更不用说链路故障的威胁了。大多数故障都与连接器端面和端口受污染、收发器激光性能下降或光纤弯曲/应力有关。前面提到的故障模式将受益于高性能光纤,因为这将延长链路寿命并减少昂贵的运营商故障单。因此,从运营和采购的角度来看,最大化光学性能裕度(光学余量)与优化总体成本之间存在不可避免的关联。