关于湖泊资源NL(ASX:LKE OTC:LLKKF)使用有效的破坏性清洁技术清洁高纯度锂 - 电动汽车制造商和锂离子电池的需求。Lake Resources NL(ASX:LKE,OTC:LLKKF)是一位干净的锂开发商,利用其最先进的IOR-ART离子交换技术来生产其在Argentina的Catamarca省在Catamarca Province的旗舰Kachi Project的可持续性,高纯净锂,在Argentina的其他三个项目中,涵盖了220,000 Ha Ha Ha。这种离子交换提取技术为两个不断上升的需求提供了解决方案 - 高纯度电池材料,以避免性能问题,更可持续的,负责任的材料具有低碳足迹和显着的ESG收益。前瞻性陈述:本公告中包含的某些陈述,包括有关项目未来财务绩效的信息,是前瞻性陈述。这种前瞻性陈述必然基于许多估计和假设,尽管湖泊资源合理,但n.l。湖泊资源N.L. 违反任何意图或义务,以更新任何前瞻性语句,无论是由于新信息,未来事件或结果还是其他方式。 “相信”,“期望”,“预期”,“指示”,“思考”,“目标”,“计划”,“打算”,“继续”,“继续”,“预算”,“估计”,“估计”,“五月”,“意志”,“时间表”,“时间表”,“时间表”和类似的表达方式确定了前瞻性陈述。 本公告中发表的所有前瞻性陈述均由上述警示陈述符合条件。湖泊资源N.L.违反任何意图或义务,以更新任何前瞻性语句,无论是由于新信息,未来事件或结果还是其他方式。“相信”,“期望”,“预期”,“指示”,“思考”,“目标”,“计划”,“打算”,“继续”,“继续”,“预算”,“估计”,“估计”,“五月”,“意志”,“时间表”,“时间表”,“时间表”和类似的表达方式确定了前瞻性陈述。本公告中发表的所有前瞻性陈述均由上述警示陈述符合条件。固有地受到重要的技术,商业,经济,竞争,政治和社会不确定性和意外事件的约束;涉及已知和未知的风险,不确定性以及其他可能导致实际事件或结果与估计或预期的事件或结果(表示或暗示的结果)的因素,反映在此类前瞻性陈述中;并可能包括有关目标,估计和价格,运营成本和结果的陈述,资本支出,储量和资源以及预期的流速,并且是基于与未来的技术,经济,市场,政治,社会和其他条件相关的假设和估计的基础,并且可能会因政府的进一步发展而限制,以便对政治,政治范围的发展以及对政治的进一步变化的风险,以便对政治的发展范围造成的融合,以致是在政治上的发展,以致,旨在融合,旨在融合。湖的项目。投资者被告知,前瞻性陈述不能保证未来的绩效,因此,由于其中固有的不确定性,投资者被告知不要过分依赖前瞻性陈述。Lake不承诺更新任何前瞻性信息,但根据适用的证券法。
EEE G541 配电设备和配置 [3 2 5] 消费者端配电装置的基本配置。变压器类型、规格、性能、保护和尺寸。电缆和绝缘层的类型、电缆参数、载流量和保护。低压开关设备的额定值及其在选择、开关瞬态和清除时间中的应用。保险丝的属性(以载流量为参考)。仪表、仪器变压器及其应用。配电层的电压控制。电能质量功率因数、频率和谐波含量的基本概念 EEE G542 电力电子转换器 [3 2 5] 转换器的重要性在于它是电源和负载之间的接口。DC-DC 转换器:降压、升压和降压-升压配置。ACDC 转换器:单相和三相二极管和晶闸管转换器。晶闸管转换器中的逆变和线路换向逆变器的应用。 DCAC 转换器:单相和三相开关模式电压源逆变器、不同类型的 PWM 操作、多级 VSI 操作、空间矢量调制技术。AC-AC 转换器:晶闸管供电交流负载、循环换流器。矩阵转换器阵列及其作为 DC-DC 和 DC-AC 转换器的操作。EEE G543 功率器件微电子学与选择 [ 3 0 3] 功率器件封装的热特性、R θJC 和 R θCS 的问题、热流及其对器件温度的影响、散热器设计和选择。双层结行为、漂移区的概念、功率二极管的特性。厚膜 BJT 中的基极操作、稳态特性、开启和关闭时间、多级功率达林顿。四层结行为、晶闸管的两个晶体管模型、四层结器件的动态模型。GTO 晶闸管、四层结器件的关闭机制、当前的技术问题。 MOS 的工作原理和特性、功率 MOSFET 的特性和结构。MOSFET 到 IGBT 的发展、技术优势、特性和动态行为。绝缘栅技术的当前技术问题。矩阵转换器简介。EEE G545 电力电子系统控制与仪表 [3 0 3] 参考电力电子转换器的调节和控制问题。反馈转换器模型:基本转换器动态、快速切换、分段线性模型、离散时间模型。DC-DC 转换器的电压模式和电流模式控制、整流器系统的比较器控制、比例和比例积分控制应用。基于线性化的控制设计:传递函数、补偿和滤波、补偿反馈控制系统。滞后控制基础知识以及在 DC-DC 转换器和逆变器中的应用。一般边界控制:边界附近的行为以及合适边界的选择。模糊控制技术的基本思想和性能问题。电力电子电路传感器、速度传感器和扭矩传感器。EEE G552 固态硬盘 [3 2 5] 驱动系统简介:要求、组件和基准;电机理论回顾;电机的电力电子控制:要求和操作问题;感应电机的静态速度控制:交流电源控制器、滑差能量回收、VSI 和 CSI 控制的感应电机;同步电机和相关机器的速度控制;直流电机速度控制问题:整流器和斩波控制器;先进的感应电机驱动控制:矢量控制,
计算机科学与工程系,Vel Tech Dr. RR &Dr. SR 技术大学,Avadi,钦奈,印度 praveenkumarrao.k@gmail.com _____________________________________________________________________________________________ 摘要 无线传感器网络 (WSN) 由具有传感、计算和无线通信功能的小型节点组成。 许多路由、电源管理和数据传播协议都是专门为无线传感器网络设计的,其中能源意识是一个重要的设计问题。 我们重点关注路由协议,它们可能因应用和网络架构而异。 在本文中,我们介绍了无线传感器网络中最先进的路由技术。 我们首先概述了无线传感器网络中路由协议的设计挑战,然后全面概述了不同的路由技术。 总体而言,路由技术根据底层网络结构分为三类:扁平、分层和基于位置的路由。此外,根据协议操作,这些协议可分为基于多路径、基于查询、基于协商、基于 QoS 和基于一致的协议。我们研究每一种路由范式中能源和通信开销节省之间的设计权衡。我们还强调了每种路由技术的优势和性能问题。本文最后提出了未来可能的研究领域。 关键词:传感器网络,数据中心协议,洪泛,八卦,SPIN _____________________________________________________________________________________ 介绍 新兴的无线传感器网络领域将传感、计算和通信结合到一个微型设备中。通过使用先进的网状网络协议,这些设备形成了广阔的连接范围,扩大了物理世界的覆盖范围。 无线传感器网络是指一组空间分散的专用传感器,用于监视和记录环境的物理条件。他们还负责在中心位置组织收集到的数据。无线传感器网络测量环境条件,如温度、声音、污染水平、湿度、风速和风向等。无线传感器网络由数百到数千个传感器节点组成。传感器节点设备包括无线电收发器、天线、微控制器、接口电子电路和能源(通常是电池)。传感器网络中的路由非常具有挑战性,因为传感器网络中存在一些与无线自组织网络不同的特性。传感器网络的数量可能比自组织网络中的节点高出几个数量级。传感器网络部署密集,但容易发生故障。传感器网络的拓扑结构经常变化,它使用广播通信,而自组织网络使用点对点通信。传感器网络在功率、计算能力和内存方面受到限制,并且由于大量的开销和大量的传感器,它没有全局标识 (ID) [1]。传感器网络可以作为应用的各种领域包括:•军事应用:无线传感器网络在军事应用中的一些可能用途示例是部队和车辆的位置和移动控制、目标检测、非人类战斗区域监控以及地雷清除或建筑勘探。•智能住宅:无线传感器网络的一些可能用途示例包括允许房屋配备运动、光和温度传感器,麦克风可用于语音激活,压力传感器可以安装在椅子中以实现楼宇自动化。其他还包括空气温度、自然和人工照明可以根据特定需求进行调整。
在过去的几十年中,人因工程学和人体工程学从业者越来越多地在系统设计和开发过程的早期被要求参与。与一个或多个学科后来发现需要更改的情况相比,所有学科的早期投入可以带来更好、更集成的设计,并降低成本。作为人因工程学和人体工程学从业者,我们的目标应该是提供关于人、人与系统的交互以及由此产生的总体性能的实质性和有充分支持的意见。此外,我们应该准备好从系统概念开发的最早阶段开始提供这种意见,然后贯穿整个系统或产品生命周期。为了应对这一挑战,多年来,许多人因工程学和人体工程学工具和技术已经发展起来,以支持早期分析和设计。两种特定类型的技术是设计指导(例如,O’Hara 等人1995;Boff 等人1986)和高保真快速原型用户界面(例如,Dahl 等人1995)。设计指导技术以手册或计算机决策支持系统的形式出现,将人为因素和人体工程学知识库的选定部分放在设计师的指尖,通常以针对特定问题(如核电站设计或 UNIX 计算机界面设计)量身定制的形式出现。但是,设计指南的缺点是它们通常不提供根据设计对系统性能进行定量权衡的方法。例如,设计指南可能会告诉我们高分辨率彩色显示器将优于黑白显示器,它们甚至可能告诉我们在增加响应时间和降低错误率方面的价值。但是,这种类型的指导很少能很好地洞察人类表现的这一改进元素对整个系统性能的价值。因此,设计指导对于为系统级性能预测提供具体输入的价值有限。另一方面,快速原型设计支持分析特定设计和任务分配将如何影响人类和系统级性能。与所有以人为对象的实验一样,原型设计的缺点是成本高昂。尤其是基于硬件的系统(如飞机和机械)的原型开发成本非常高,尤其是在设计初期,因为那时存在许多截然不同的设计理念。人类行为和表现的计算机建模并不是一项新尝试。尽管花费不菲,但硬件和软件原型设计对于人为因素从业者而言仍是重要的工具,而且它们在几乎所有应用领域的使用都在增长。虽然这些技术对于人为因素从业者而言很有价值,但通常需要的是一种能够从人为因素和人体工程学数据基础(如设计指南和文献中所反映的那样)推断的集成方法,以便支持作为设计替代方案的函数的系统级性能预测。该方法还应以相互支持和迭代的方式与快速原型设计和实验相结合。正如在许多工程学科中的情况一样,这种集成方法的主要候选对象是计算机建模和仿真。复杂认知行为的计算机模型已经存在 20 多年(例如 Newell 和 Simon 1972),并且自 20 世纪 70 年代以来,就已经出现了用于任务级绩效的计算机建模工具(例如 Wortman 等人1978)。但是,在过去十年中,有两件事发生了显著变化,促使使用计算机建模和模拟人类表现作为从业者的标准工具。首先是计算机能力的快速提升以及与之相关的更易于使用的建模工具的开发。有兴趣通过模拟预测人类表现的个人可以从各种基于计算机的工具中进行选择(有关这些工具的完整列表,请参阅 McMillan 等人1989)。第二,研究界越来越关注开发人类表现的预测模型,而不仅仅是描述模型。例如,GOMS 模型(Gray 等人1993)代表将研究整合到一个模型中,用于预测人类在现实任务环境中的表现。另一个例子是认知工作量的研究,它被表示为计算机算法(例如,McCracken 和 Aldrich 1984;Farmer 等人1995)。给定人类所从事的任务和设备的描述,这些算法支持评估何时可能发生与工作量相关的性能问题,并且通常包括识别这些问题对整体系统性能的定量影响(Hahler 等人1991)。这些算法在作为关键组件嵌入到任务和环境的计算机模拟模型中时特别有用。计算机建模和模拟最强大的方面可能在于它提供了一种方法,通过该方法,人因和人体工程学团队可以与
可以安全地为碱性AA电池充电吗?否,由于风险和排放性能差,碱性AA电池不应安全地充电。这些一次性电池旨在立即使用,充电可能会导致泄漏或爆炸。制造商警告不要为它们充电,但一些用户可能会选择可充电的替代方案。镍金属氢化物(NIMH)和镍 - 卡德蒙(NICD)AA电池是专门设计用于充电的。这些选项为减少浪费和节省电池成本提供了可靠的解决方案。有些人认为所有AA电池都可以充电,但事实并非如此。研究表明,轻巧的锂离子电池设计使其适合于便携式电子设备,而安全机制则可以防止过热和过度充电。nimh和锂离子电池提供可充值的和效率,但它们的用法取决于特定的需求,例如能源容量,应用和预算。围绕AA电池充电的神话主要源于对电池类型和适用性的误解。许多人认为所有AA电池都可以充电,但是美国能源部并非全部都是为多个电荷周期设计的。例如,碱性电池是一次性的,由于化学的差异,不应为其充电。 这些神话背后的主要原因是关于电池化学和可充电产品的营销的困惑。 关键区别在于“电压下降”和“保留电荷”。 但是,它们的性能受到所使用的特定化学作用的影响。碱性电池是一次性的,由于化学的差异,不应为其充电。这些神话背后的主要原因是关于电池化学和可充电产品的营销的困惑。关键区别在于“电压下降”和“保留电荷”。但是,它们的性能受到所使用的特定化学作用的影响。碱性电池在使用时迅速失去电力,并试图为它们充电会导致由于燃气积聚而导致泄漏或爆炸。可充电的NIMH电池保持稳定的电压,设计用于重复充电而不会迅速降解。关于可充电AA电池的常见误解包括认为它们不能很好地容纳充电,所有可充电的AA电池都是相等的,其寿命比碱性电池较短,或者您可以混合可充电和不可电池的电池。可充电AA电池可提供出色的性能和可充电的AA电池,例如使用镍金属氢化物(NIMH)化学反应的电池,与碱性电池相比,它们的电荷相对较好。储能协会报告说,NIMH电池在第一个月内可能会损失多达20%的充电,但在最佳条件下六个月的能力保留了85%的容量。存在可充电AA电池之间的可变质量,容量,电荷周期和放电率有所不同,影响性能。高容量的NIMH电池储存了更多的能量,并且通常是消费者的首选。但是,研究表明知名品牌倾向于胜过鲜为人知的公司。在寿命方面,与碱性电池相比,可充电AA电池通常具有更长的寿命。虽然碱性电池可能持续5-10次用途,但NIMH电池可以承受500-1000的充电周期,具体取决于使用和护理。由于潜在的性能问题和安全性问题,不建议使用设备中的不同电池类型。必须为设备使用正确的电池类型以确保最佳功能。充电可充电AA电池可以部分延长其寿命和效率。制造商建议在仍会部分充电时对这些电池充电,而不是在充电之前完全排干。存在为AA电池充电的各种方法,包括使用专用可充电电池,智能充电器,太阳能充电器和替代技术。充电AA电池需要了解各种方法,以最大程度地提高其寿命和效率。专用可充电的AA电池:NIMH(镍金属氢化物)和NICD(镍瓦)电池是可充电的选项,由于其高容量和低自我免税速度,NIMH更受欢迎。智能电池充电器:使用智能充电器可以防止充电并延长可充电电池的运行寿命。太阳能充电:太阳能充电器提供了一种环保的方式,可在阳光明媚的气候下为AA电池充电,但可能比传统充电器慢。自制充电方法:这些方法涉及将电池连接到电源,但是如果无法正确完成,则构成爆炸或泄漏等风险。电池脱硫技术:此过程主要用于铅酸电池,可以通过去除硫酸盐积聚来恢复它们。值得注意的是,本文的主要目的是教育读者如何正确地为AA电池充电,重点是可充电选项和安全预防措施。传统的AA电池在性能和寿命方面有局限性。文本的第二部分专门讨论了碱性AA电池的主题,以及为什么不应该充电。诸如设备功率需求和用户习惯之类的因素在选择电池中也起着至关重要的作用。例如,迅速消耗功率的设备可能会受益于可充电电池(例如NIMH或锂离子选项)。但是,并非所有设备都与可充电电池兼容,并且某些较旧的型号可能需要比这些选项提供的更高的电压。碱性AA电池不应因安全危害而充电,但是可充电的替代品为频繁进行电池的频繁更换提供了一种实用且经济的选择。用户在电池类型之间进行选择时应考虑其设备需求和习惯。诸如锂离子电池之类的新技术可能会带来其他好处。有更好的替代方法,可以替代传统的AA电池,例如可充电NIMH和锂离子电池。这些选项可以重复使用数百次,并且比标准碱性AA电池具有多个优势。可充电电池可以具有成本效益,因为可以多次充电和重复使用,从而减少浪费并节省消费者的钱。但是,与传统的AA电池相比,它们通常具有更高的前期成本,并且需要特定的充电器。随着时间的流逝,可充电电池可能会遭受“记忆效果”的影响,但是现代的NIMH电池通过改进的技术来减轻此问题。消费者在选择电池类型之前应评估其特定需求。碱性可充电电池的性能可能有很大差异。如果预计将大量使用在高级设备中,则建议使用可充电电池。偶尔在低量设备中使用,传统的AA电池仍然足够。过渡到可充电电池对常见用户来说既可以环保又经济。但是,碱性AA电池通常无法有效地充电,在失去容量之前,寿命有限约为10至30个电荷周期。这是因为碱性电池不是为充电而设计的,这与NIMH或Li-ion这样的可充电电池不同。根据制造商的说法,这些电池可能会在五次费用后保留其初始容量的60%,并在十项费用后降至30%。这种降低的性能是由于化学成分在经过充电周期时更快地恶化。实际上,考虑通常使用AA碱电池的遥控器。如果您在每次使用后充电它们,则最初可能运行良好,但最终开始表现不佳。温度和充电方法等因素会影响寿命;高温可以进一步降低性能,而使用专门为碱性电池设计的专用充电器可以产生更好的效果。此外,电池本身的质量会极大地影响寿命。总而言之,碱性AA电池未针对充电进行优化,其有效寿命也受到限制。要获得更好的结果,请考虑使用专门的可充电电池,专为多个电荷循环或替代电池类型(例如NIMH或LITHIUM)设计。以延长可充电AA电池的寿命,遵循最佳实践:正确充电,将它们存放在凉爽干燥的地方,避免进行深层排放,使用优质充电器,保持触点清洁,定期循环电池,在使用过程中监视温度,并在必要时更换旧电池。实施这些技巧可以显着提高性能和寿命。维护可充电的AA电池:建议在耗尽之前延长寿命充电的技巧,以防止损坏和保持容量,并保持容量。使用质量充电器至关重要,因为低质量的充电器可能会导致收费或收费不足。加利福尼亚能源委员会建议使用具有内置安全功能的充电器。定期清洁接触对于保持电导率和性能至关重要。污垢,灰尘和腐蚀会妨碍电流,从而降低效率。研究表明,干净的接触可改善电池连接性和寿命。循环电池定期有助于重新校准电源管理系统,如电气和电子工程师研究所所述。FDA建议在使用过程中监测0°C和40°C之间的温度,以确保最佳功能和安全性。必要时更换旧电池至关重要,因为它们会随着时间的流逝而失去容量。来自消费者电池测试实验室的一项研究表明,更换电池不再容纳电池以确保设备中的最佳性能。