3 另外,道具的展示顺序也是随机的。 4 由于10个项目中有4个被呈现,因此如果随机呈现,每个项目出现的次数可能会有所不同。因此,可以使用平衡的不完全区组设计(Louviere 和 Flynn,2010)来确保项目出现的频率相等。然而,由于本章的样本量非常大,达到 150,010(使用下面描述的计数方法),我们确定由于随机呈现而导致的出现次数差异很小。
腔量子电动力学通过将谐振器与非线性发射器 1 耦合来探索光的粒度,在现代量子信息科学和技术的发展中发挥了基础性作用。与此同时,凝聚态物理学领域因发现底层拓扑 2 – 4 而发生了革命性的变化,这种拓扑变化通常源于时间反演对称性的破缺,例如量子霍尔效应。在这项工作中,我们探索了拓扑非平凡的 Harper-Hofstadter 晶格 5 中 transmon 量子比特的腔量子电动力学。我们组装了铌超导谐振器 6 的晶格,并通过引入亚铁磁体 7 来破缺时间反演对称性,然后再将系统耦合到 transmon 量子比特。我们用光谱方法分辨晶格的各个体模式和边缘模式,检测激发的 transmon 和每个模式之间的 Rabi 振荡,并测量 transmon 的合成真空诱导兰姆位移。最后,我们展示了利用 transmon 计数拓扑能带结构每个模式内单个光子 8 的能力。这项工作开辟了实验手性量子光学 9 领域,使微波光子的拓扑多体物理成为可能 10,11,并为背向散射弹性量子通信提供了途径。由光构成的材料是量子多体物理学的一个前沿 12 。依靠非线性发射器来产生强光子 - 光子相互作用和超低损耗超材料来操纵单个光子的属性,这个领域探索了凝聚态物理和量子光学的接口,同时生产用于操纵光的设备 13,14。最新研究成果表明,光子在具有拓扑特性15的光子中会经历圆形时间反转破缺轨道,这为探索诸如(分数)量子霍尔效应2、3、Abrikosov晶格16和拓扑绝缘体4等固态现象的光子类似物提供了机会。在电子材料中,圆形电子轨道是由磁或自旋轨道耦合4产生的。与电子不同,光子是电中性物体,因此不会直接与磁场耦合。因此,人们正在努力为光子生成合成磁场,并更广泛地探索在合成光子平台中拓扑量子物质的概念。光学和微波拓扑光子学都在这一领域取得了重大进展。在硅光子学 17、18 和光学 19、20 中,通过在偏振或空间模式中编码伪自旋,已经实现了合成规范场,同时保持了时间反转对称性。在射频和微波超材料中,已经探索了具有时间反转对称性 21、22 和破缺时间反转对称性的模型,其中时间反转对称性破缺由以下因素引起:
摘要:激光无处不在,用于信息存储,处理,通信,传感,生物学研究和医疗应用。为了减少其能量和材料的使用,一个关键的追求是将激光器降低到纳米腔。获得最小的模式量需要等离激液腔,但是对于这些,增益仅来自一个或几个发射器。到目前为止,由于增益低和空腔损失高,在此类设备中的激光是无法实现的。在这里,我们演示了一种接近单分子发射极制度的等离激液量的“发射器激光”的形式。少数发射机的激光过渡显着宽广,取决于分子的数量及其各个位置。我们表明,可以通过开发一种延伸以前的弱耦合效率的方法来理解这种非标准的少数发射机。我们的工作为开发纳米剂应用以及以少数发射器的极限开发的基础研究铺平了道路。
摘要:激光无处不在,用于信息存储,处理,通信,传感,生物学研究和医疗应用。为了减少其能量和材料的使用,一个关键的追求是将激光器降低到纳米腔。获得最小的模式量需要等离激液腔,但是对于这些,增益仅来自一个或几个发射器。到目前为止,由于增益低和空腔损失高,在此类设备中的激光是无法实现的。在这里,我们演示了一种接近单分子发射极制度的等离激液量的“发射器激光”的形式。少数发射机的激光过渡显着宽广,取决于分子的数量及其各个位置。我们表明,可以通过开发一种延伸以前的弱耦合效率的方法来理解这种非标准的少数发射机。我们的工作为开发纳米剂应用以及以少数发射器的极限开发的基础研究铺平了道路。
摘要背景髓鞘碱性蛋白(MBP)是中枢神经系统髓鞘中第二丰富的蛋白质。自20世纪80年代以来,它一直被视为创伤和疾病中脑组织损伤的标志物。目前尚无关于动脉瘤性蛛网膜下腔出血(SAH)中MBP的报道。方法104例动脉瘤破裂的SAH患者,在破裂后24小时内接受血管内治疗,采集156份血液样本:SAH后0 - 3天104份,4 - 6天32份,9 - 12天20份。采用ELISA检测MBP水平,并与入院时的临床状况、实验室结果、影像学检查结果和3个月时的治疗结果进行比较。结果 SAH 后 0 – 3 天的 MBP 水平在预后不良患者 (p < 0.001)、死亡患者 (p = 0.005)、接受颅内介入治疗的患者 (p < 0.001) 和脑出血 (ICH; p < 0.001) 患者中显著升高。SAH 后 4 – 6 天,颅内介入治疗 (p = 0.009) 和 ICH (p = 0.039) 后的 MBP 水平显著升高。SAH 后 0 – 3 天的 MBP 水平与 3 个月格拉斯哥预后量表 (cc = − 0.42) 以及 ICH 体积 (cc = 0.48) 之间存在临床相关性。所有完全康复的患者在 SAH 后 0 – 3 天的 MBP 水平均低于检测限。血管内动脉瘤封堵术后,104例患者中86例(83%)MBP未升高。结论颅内动脉瘤破裂后外周血MBP浓度反映脑组织损伤程度(手术或ICH所致),与治疗结果相关。血管内动脉瘤封堵术后MBP未升高,提示该技术安全性较高。
dlrs太空推进研究所拥有与火箭发动机推室设计方面相关的实验研究的长期遗产。由于欧洲的传统关注欧洲的LOX/氢气推进系统,例如沟渠,HM-7B或Vinci,因此科学焦点被放在LOX和氢气的高压燃烧现象上。感兴趣的科学领域包括点火和瞬态,燃烧效率和动力学以及喷油器设计,燃烧室冷却,喷嘴流以及推力室结构和疲劳寿命。在欧洲研发测试台P8上使用各种测试标本进行了与高压燃烧相关的实验,该试验具有在代表典型火箭发动机的条件下进行测试的可能性[3]。自2014年以来,DLR也在涡轮机械领域建立能力。基于这些现有能力和测试功能,DLR于2017年启动了Lumen Bread Engine项目,其主要目标是:促进对发动机流程的理解,以系统级别展示能够预测
利用人工智能设计功能性有机分子 用户名:Masato Sumida 1,2 Xiufeng Yang 2 日本理化学研究所实验室隶属关系: 1. 先进智能项目中心富士通协作中心 2. 先进智能项目中心目标导向平台技术研究组分子信息学团队
1。环境评估的背景评估水环境的概念已按照腐生方法,多样性指数和生物指数的顺序发展。污染方法以BOD(生物氧的要求)为例,并使用水质成分分析来评估适合水和工业用途的水。在评估人类清洁水的同时,有时候,清洁水流和动植物可以生存的环境的环境不一致。多样性指标可以通过评估组成平衡和总数来评估基因,物种,生态系统等。另一方面,它需要大量的时间和精力,并且不适合在人类彼此相邻的地方(例如Satoyama)的地方进行评估。生物指标测量有关典型物种的信息,并试图评估环境的良好性,最近有些人使用概念(例如完整性和健康)来评估环境。这些概念还抵消了污染方法和多样性指标的缺点。