摘要 目的 确定青少年和青年男性运动员临床样本中低能量可用性 (EA) 替代指标与运动相对能量缺乏 (RED) 的预期健康和表现结果之间的关联。方法 邀请到两家三级医疗中心的运动医学诊所就诊的 15-30 岁男性运动员完成一份关于运动员健康和福祉的调查。根据调查回复,将参与者分为低 EA 组和充足 EA 组。使用 χ2 检验评估低 EA 和 RED 结果之间的关联,并使用二项逻辑回归计算 OR(显著性:p<0.05)。结果 低 EA 与自我报告的免疫、代谢、心理、心血管和胃肠道功能障碍的频率增加有关;耐力表现、训练反应、判断、协调和肌肉力量下降;以及易怒和抑郁增加。与 EA 充足的运动员相比,EA 较低的运动员更有可能出现自我报告的心血管功能障碍(OR 2.87,95% CI 1.56 至 5.26)和心理疾病(OR 3.23,95% CI 1.91 至 5.41),训练反应下降(OR 2.64,95% CI 1.38 至 5.03)和耐力表现下降(OR 2.26,95% CI 1.13 至 4.52),并且不太可能出现自我报告的性腺功能障碍(OR 0.49,95% CI 0.30 至 0.81)(p<0.05)。结论 低 EA 替代指标与男性运动员 RED 的许多不良健康结果和表现影响有关。需要对男性进行更多的前瞻性 RED 研究,以改进年轻男性运动员 RED 筛查的各个方面。
摘要 目的 确定青少年和青年男性运动员临床样本中低能量可用性 (EA) 替代指标与运动相对能量缺乏 (RED) 的预期健康和表现结果之间的关联。方法 邀请到两家三级医疗中心的运动医学诊所就诊的 15-30 岁男性运动员完成一份关于运动员健康和福祉的调查。根据调查回复,将参与者分为低 EA 组和充足 EA 组。使用 χ2 检验评估低 EA 和 RED 结果之间的关联,并使用二项逻辑回归计算 OR(显著性:p<0.05)。结果 低 EA 与自我报告的免疫、代谢、心理、心血管和胃肠道功能障碍的频率增加有关;耐力表现、训练反应、判断、协调和肌肉力量下降;以及易怒和抑郁增加。与 EA 充足的运动员相比,EA 较低的运动员更有可能出现自我报告的心血管功能障碍(OR 2.87,95% CI 1.56 至 5.26)和心理疾病(OR 3.23,95% CI 1.91 至 5.41),训练反应下降(OR 2.64,95% CI 1.38 至 5.03)和耐力表现下降(OR 2.26,95% CI 1.13 至 4.52),并且不太可能出现自我报告的性腺功能障碍(OR 0.49,95% CI 0.30 至 0.81)(p<0.05)。结论 低 EA 替代指标与男性运动员 RED 的许多不良健康结果和表现影响有关。需要对男性进行更多的前瞻性 RED 研究,以改进年轻男性运动员 RED 筛查的各个方面。
海洋酸化会显着影响牡蛎等海洋钙化剂,保证研究分子机制(如DNA甲基化),这些机制响应环境变化而导致自适应可塑性。然而,在海洋无脊椎动物中,甲基化模块基因表达和可塑性的程度尚未达成共识。在这项研究中,我们研究了PCO 2对基因表达和DNA甲基化的影响,在牡蛎crassostrea virginica中。暴露于30天的对照(572 ppm)或升高的PCO 2(2,827 ppm)后,由成年雌性性腺组织和雄性精子样本产生了整个基因组Bisulfite测序(WGB)和RNA-SEQ数据。尽管在女性(89)和雄性(2,916)中鉴定出差异化甲基化的基因座(DML),但没有差异表达的基因,并且在女性中只有一个差异表达的转录本。然而,基因体甲基化影响了精子中其他形式的基因活性,例如每个基因表达的最大转录本数以及表达的主要转录本的变化。升高的PCO 2暴露增加了男性基因表达变异性(转录噪声),但女性的噪声降低,表明甲基化在基因表达调节中的性别特异性作用。对转录级表达变化或含有DML的基因的功能注释显示,有几个富集的生物学过程可能参与了升高的PCO 2响应,包括凋亡途径和信号转导,以及生殖功能。综上所述,这些结果表明,DNA甲基化可能调节基因表达变异性,以维持升高的PCO 2条件下的稳态,并且可能在海洋无脊椎动物的环境弹性中发挥关键作用。
近年来,识别为跨性别者的人口迅速增长,导致获得性别提供性别医疗服务以使其次要性特征与性别认同保持一致的个人大大增加。这为患者确定了好处,包括改善性别烦躁不安和社会心理功能,同时减少了不良心理健康结果。尽管有这些潜在的优势,但最近的证据表明,性别表明激素治疗(GAHT)可能会增加汽车Diofast疾病的风险。然而,由于缺乏研究,对这些增加风险的基础的机制知之甚少。此外,先前的研究受到异源方法的限制,功能不足,缺乏适当的控制人群。因此,关于LGBTQ +个体心血管健康的证据的需求已被认为是未来研究的关键领域,以促进更好的医疗保健和指导。最近的研究研究了跨性腺菌(Testos Terone)Gaht对心血管疾病风险点对睾丸激素的影响,从而影响一氧化氮途径,引发炎症并促进内皮功能障碍。需要重点关注转换(雌激素)GAHT的等效研究,这代表了未来研究的关键领域。此外,在检查GAHT对脉管系统的影响时,不能忽略多种因素可能会增加跨性别人群中心血管疾病的负担。这些压力源包括重大的心理压力;不良健康行为增加,例如吸烟;歧视;并降低了社会经济地位;所有这些无疑都会影响心血管疾病的风险,并为干预提供了机会。
我们使用慢性16通道碳纤维电极和快速扫描的环状伏安法(FSCV)研究了伏隔核(NAC)和背外侧纹状体(DLS)中多巴胺(DA)释放的性别差异。电刺激诱导的(ES; 60 Hz)DA释放记录在单人或成对的雄性和雌性大鼠的NAC中。同时记录核心(NACC)和壳(NAC)时,与单个女性和男性相比,NACC的NACC中有更大的ES DA释放。住房不影响男性的ES NAC DA释放。相比之下,雌性大鼠DL的ES DA释放明显高于雄性大鼠。在用甲基苯丙胺治疗之前和之后,这是正确的。此外,在cast割的(铸造)男性和卵形(OVX)女性中,DLS的ES DA释放没有性别差异,这表明这种性别差异的激素依赖性。然而,在完整的和性腺切除大鼠的DL中,女性的da重摄取比男性慢。最后,在4周内研究了60 Hz的内侧前脑束后的DA释放。es da释放随着时间的流逝而增加,表现出敏感性。使用这种新颖的16通道慢性FSCV电极,我们发现社会住房在NACS中的影响,DLS完整大鼠的DA释放性别差异以及DLS摄入和Gonadectomized大鼠DLS的性别差异以及DA重新摄取的性别差异,以及我们报告了Es-eS诱导的DA释放da In dls in dls dls in vivo的敏感性。
生殖医学的最新进展指导了解决男性不育症的新型策略,尤其是在非目标化植物植物(NOA)的情况下。两种突出的侵入性干预措施,即睾丸精子提取(TESE)和微分解TESE(微型TESE),已成为检索辅助复制技术(ART)配子的关键技术。NOA的异质性和复杂性对临床医生构成了多方面的挑战,因为这些程序的侵入性及其不可预测的成功强调了需要更精确的指导。精确血浆可以恰当地将其视为雄性生殖道的液体活检,包括睾丸,附子酰胺,精液囊泡,球状腺体和前列腺的分泌物。这种流体具有多种无细胞的核酸,微泡,蛋白质和代谢物与性腺活性无关。然而,尽管进行了许多研究探讨了开创性流体的潜在生物标志物,但它们的广泛包含在临床实践中仍然有限。这可能部分是由于NOA固有的各种临床和遗传因素的复杂相互作用可能导致缺乏对残余精子发生的明确生物标志物。可以想象,在NOA情况下,临床数据与生物标志物的整合可以增加预测手术程序结果及其选择的潜力。这项全面的综述通过非侵入性生物标志物解决了NOA中精子检索的挑战。此外,我们深入研究了有前途的观点,阐明了基于多词方法的创新方法,包括基因组学,转录组学和蛋白质组学。这些尖端技术,结合患者的临床和遗传学特征,可以改善在个性化医疗方法,患者咨询和决策连续体中使用生物标志物的使用。最后,人工智能(AI)在结合生物标志物和临床数据的领域中具有重要的潜力,这也是在识别非侵入性生物标志物以进行精子检索的情况下。
青春期的特征是童年的终点和青春期的开始。所有生理和神经系统变化代表了人类发展的关键阶段,从童年到成年。在此阶段,随着它们成熟的各种人类系统,它们之间存在着重要而重要的生物学相互作用。通过激素,物理和神经过程对不同生物系统的和谐功能对于人类发展的这一阶段至关重要。这些生物系统的功能取决于个人的遗传遗产和他们作为青少年的社会生活(例如,家庭支持,社会经济地位和健康的行为)(1-4)。在女孩中,青春期的发作开始于11岁左右,而在男孩中,它发生在12岁左右。在这段时间里,发生了第一次解剖转化,例如女孩的乳腺发育和男孩的睾丸体积增加(4)。下丘脑 - 垂体 - 基达轴在青春期期间经历了显着的激活和成熟,导致性激素分泌,包括睾丸激素和雌激素。这些激素变化影响了继发性特征,生殖器官以及整体身体生长和成熟的发展(5)。在青春期,下丘脑是大脑的一个区域,开始释放促性腺激素释放激素(GNRH),该激素(GNRH)刺激了垂体以释放两种重要的激素:叶酸激素(LH)和刺激性激素(fsh)(fsh)(6)。早期的青春期这些激素作用于雌性或雄性睾丸的卵巢作用,从而触发性激素的产生 - 雌性的雌激素和男性的睾丸激素(6)。青春期时期取决于遗传学和社会因素,例如营养,社会经济地位和心理特征(4,5)。这一时期是由激素浮动和遗传因素驱动的,有助于在青春期观察到的认知和行为转化,通常发生在性腺后2 - 4年后(4,7)。大脑中的结构和功能重组会影响负责情绪调节,社会认知和决策的领域。
目的:性发育障碍 (DSD) 是指染色体、性腺和解剖性别发育不典型的先天性疾病。尽管进行了广泛的实验室和影像学检查,但超过 50% 的患者仍无法查明 DSD 的病因。方法:我们通过全外显子组测序 (WES) 对 9 名平均年龄为 10 岁的患者进行了 DSD 病因评估,这些患者通过激素、影像学和候选基因等多种方法进行了广泛的评估,但未能确定病因。结果:8 名 46,XY 患者出生时患有小阴茎、隐睾和尿道下裂,46,XX 患者患有大阴唇融合。在 7 名患者 (78%) 中,发现了 RXFP2、HSD17B3、WT1、BMP4、POR、CHD7 和 SIN3A 的致病变异。在两名患者中未发现致病变异。之前报道了三种基因突变,它们具有不同的表型:一名 11 岁男孩携带新的 BMP4 从头变异;此类变异主要与小眼畸形有关,少数情况下与男性外生殖器异常有关,这支持了 BMP4 在男性外生殖器发育中的作用;一名 12 岁男孩携带已知的 RXFP2 致病变异,该变异编码胰岛素样 3 激素受体,之前在患有隐睾的成年男性中也有报道;一名患有综合征性 DSD 的 8 岁男孩携带 SIN3A 从头缺失。结论:我们在 78% 的患者中发现了 DSD 的分子病因,这表明 WES 在早期 DSD 诊断和管理中发挥着重要作用,并强调了在婴儿早期快速进行分子诊断对于抚养性别决策的重要性。
背景:人类诱导的多能干细胞(HIPSC)的人类睾丸器官的产生为性腺发育生物学和生殖疾病建模提供了令人兴奋的机会。但是,创建类型的类器官,这些器官紧密模仿睾丸的组织结构仍然具有挑战性。方法:在这项研究中,我们建立了一种使用逐步分化方法以及悬挂掉落和旋转培养系统的组合从HIPSC生成睾丸器官(TOS)的方法。通过检测形态,单细胞RNA测序和蛋白质谱证实了HIPSC衍生的前体睾丸细胞自组装成类器官的能力。通过测量转录组特征和功能特征的测量,包括激素的反应性和血液杀伤性(BTB)形成,以及通过记录对生殖毒素生殖的细胞的细胞活力和BTB完整性来评估睾丸类器官作为药物评估模型的可靠性。最后,我们应用了睾丸类器官来评估半瓜肽是胰高血糖素样肽-1受体激动剂(GLP-1 RA)对睾丸功能的影响,从而强调了它们作为药物评估模型的实用性。结果:这些类器官表现出睾丸状结构和BTB功能。RNA测序和功能测定确认睾丸类器官具有促性腺激素调节的基因表达谱和内分泌功能,与睾丸组织的基因表达谱和内分泌功能非常相似。值得注意的是,这些类器官表现出对半卢比德的敏感性。用半卢宾治疗导致睾丸激素水平降低和INHBB表达的下调,与先前的临床观察一致。结论:这些发现引入了一种从人多能干细胞中产生睾丸器官的方法,突出了它们作为研究睾丸功能,药物毒性的有价值模型,以及Semaglutide等化合物对睾丸健康的影响。
促卵泡激素 (FSH) 是哺乳动物生殖的重要调节剂,尤其是对雌性而言。抑制素是性腺中产生的 TGFβ 家族配体,可抑制垂体促性腺激素细胞合成 FSH。抑制素需要辅助受体 betaglycan 或 TGFBR3L 来介导其功能。与对照组相比,促性腺激素特异性 betaglycan 缺失或 Tgfbr3l 整体缺失的雌性小鼠的卵泡发育、排卵卵子数量和产仔数均有所增强。两个辅助受体均被敲除的雌性小鼠(以下称为 dKO)的 FSH 水平、卵巢大小和自然周期排卵卵子数量均显著增加。dKO 卵子具有受精能力,雌性小鼠会怀孕,并且胚胎第 7.5 天 (E7.5) 植入的胚胎数量显著增加。然而,dKO 雌性小鼠不会生下活的后代。到 E10.5 时,dKO 雌性小鼠的胎盘单位重量下降,许多胚胎出现形态异常。到 E14.5 时,dKO 雌性小鼠的大多数胚胎已死亡并被吸收。野生型代孕小鼠在移植对照组或 dKO 雌性小鼠的胚胎后生下活体幼崽。相反,对照组小鼠而非 dKO 雌性小鼠会将野生型胚胎带到足月。这些数据表明 dKO 小鼠的母体环境无法支持成功怀孕。事实上,使用阿那曲唑抑制怀孕的 dKO 雌性小鼠的雌激素产生可增加 E12.5 时的活体胚胎数量,这表明雌激素在怀孕期间升高,不利于胚胎发育。FSH 在妊娠期间也会升高。FSH 和雌激素都与胎盘血管生成有关。我们目前正在研究 E7.5 和 E10.5 时的胎盘单元形态,以确定异常胎盘发育是否可能导致 dKO 女性不孕。这些实验将显示垂体促性腺激素抑制素作用的丧失如何阻碍胚胎存活。