新辅助化学免疫性疗法已彻底改变了非小细胞肺癌(NSCLC)的治疗策略,并确定可能对这种先进治疗的候选者具有重要的临床意义。目前的多机构研究旨在开发一种深度学习模型,以预测基于计算机断层扫描(CT)成像的NSCLC中对新辅助免疫疗法的病理完全反应(PCR),并进一步探讨了拟议的深度学习签名的生物学基础。在2019年1月至2023年9月,总共有248名接受新辅助免疫疗法的参与者在Ruijin医院,Ningbo Hwamei医院接受NSCLC的手术,然后在Ruijin医院进行NSCLC手术和Zunyi医科大学的后医院。在新辅助化学免疫性疗法之前的2周内进行了成像数据。鲁伊因医院的患者被分为培训集(n = 104)和6:4比率的验证集(n = 69),而宁波·霍马伊医院(Ningbo Hwamei Hospital)和祖尼医科大学(Zunyi)医科大学的其他参与者则是外部队列(n = 75)。在整个人群中,在29.4%(n = 73)的病例中获得了PCR。我们对PCR预测深度学习签名曲线下的区域(AUC)为0.775(95%的置信间隔[CI]:0.649-0.901)和0.743(95%CI:0.618-0.869)的验证集和外部队列中的0.5%(95%)(95%)(95%)(95%)(95%)。临床模型的0.689)和0.569(95%CI:0.454-0.683)。此外,较高的深度学习评分与微环境中细胞代谢途径和更多抗肿瘤免疫的上调相关。我们开发的深度学习模型能够预测NSCLC患者的新辅助化学免疫性疗法。
[ 直流控制器是一种微电子混合设备。采用了 MIL-HDBK-217B 通知 2《电子设备可靠性预测》第 2.1.7 节中的混合故障率预测模型和程序。这种预测方法需要识别单个电子零件和基板,以及每个零件的单独电应力数据。热应力是由混合封装温度和零件功率耗散引起的。
图1:这项研究的主要期望的图形摘要。基层生态系统(通过UAV pho-to-to-to-to-to to-to grammetric图像评估)具有复杂的垂直结构(从上图中的侧面和下部图中从上方看)和高环境异质性,预计将具有高的花朵多样性和高度的多样性和丰富性和丰富性(左图)。另一方面,HH低的草地地区可能具有较低的花朵多样性,蜜蜂的多样性和丰度(右图)。
保留所有权利。未经许可就不允许重复使用。(未经同行评审证明)是作者/资助者,他已授予Medrxiv的许可证,以永久显示预印本。此预印本版的版权持有人于2025年3月5日发布。 https://doi.org/10.1101/2025.02.28.25323117 doi:medrxiv preprint
摘要目的:癌细胞系的大量药物基因组学数据的快速积累为药物敏感性预测(DSP)提供了前所未有的机会,这是促进精度肿瘤学的关键先决条件。最近,生成的大语言模型(LLM)表明了自然语言处理领域(NLP)领域的各种任务的性能和概括。然而,药物基因组学数据的结构化格式对DSP中LLM的实用性提出了挑战。因此,这项研究的目的是多重的:适应结构化药物基因组学数据的及时工程,以优化LLM的DSP性能,评估LLM在现实世界DSP方案中的概括,并比较LLM的DSP性能与目前的Science-Science Baselines。方法:我们系统地研究了生成性预训练的变压器(GPT)作为四个公开基准药物基因组学数据集的DSP模型,这些模型由五种癌症组织类型的细胞系和肿瘤学和非综合药物进行分层。本质上,通过四个学习范式评估了GPT的预测格局在DSP任务中的有效性:零射击学习,几乎没有学习,微调和聚类预处理的嵌入。通过实施三个及时的模板(即指令,指导,预定,披肩)并将与药剂基因组相关的特征集成到提示中,为了促进GPT无缝处理结构化的药物基因组学数据,采用了域特异性新颖的及时工程。与最先进的DSP基准相比,GPT主张了卓越的F1性能我们验证了GPT在不同的现实世界DSP方案中的表现:跨组织概括,盲试和药物校园关联的分析以及顶级灵敏/抗性细胞系。此外,我们对GPT进行了比较评估,该评估是针对多个基于变压器的预验证模型和现有的DSP基准的。结果:在五个组织组的药物基因组学数据集上进行的广泛实验表明,微调GPT会产生最佳的DSP性能(28%F1增加,P值= 0.0003),然后群集预处理的GPT嵌入了GPT嵌入(26%F1增加,P-value = 0.0005),很少有gpt(I.但是,在零射击设置中的GPT具有很大的F1间隙,导致表现最差。在迅速工程的范围内,通过直接指导GPT有关DSP任务并诉诸简洁上下文格式(即指令 - 预备)来实现性能提高,从而导致F1性能增长22%;同时,从基因组学和/或分子特征衍生出的药物细胞线及时及格环境将F1得分进一步提高了2%。
此预印本版的版权持有人于2025年3月4日发布。 https://doi.org/10.1101/2025.02.28.25323068 doi:medrxiv preprint
Optimizing transcriptome-based synthetic lethality predictions to improve precision oncology in early-stage breast cancer: BC-SELECT Yewon Kim 1 , Matthew Nagy 2 , Rebecca Pollard 1 , *Padma Sheila Rajagopal 1,3 1 Cancer and Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD 2 Boston Children's Hospital, Boston, MD 3 Women's恶性分支,癌症研究中心,国家癌症研究所,贝塞斯达,医学博士摘要单词计数:246个单词单词计数:3,649个单词参考文献:75参考图 /表计数:图:4表:2表:2补充图:2补充表:2补充表:3个补充表:3个通信作者:PADMA SHEILA RAJAGOPAL,MD MSC MSSC MSSC PORDICAIN 4B PRODENATIAN:10贝塞斯达,医学博士20892电子邮件:sheila.rajagopal@nih.gov电话:240-858-3169跑步标题:BC-SELECT:早期乳腺癌的治疗反应预测
摘要 - CB2受体配体活性的准确预测是针对该受体的药物发现的关键,这与炎症,疼痛管理和神经退行性疾病有关。尽管传统的机器学习和深度学习技术已经显示出希望,但其有限的解释性仍然是理性药物设计的重要障碍。在这项工作中,我们介绍了CB2Former,该框架将图形卷积网络(GCN)与变压器体系结构相结合以预测CB2受体配体活动。通过利用变压器的自我发项机制以及GCN的结构学习能力,CB2Former不仅增强了预测性能,而且还提供了对受体活性基础分子特征的见解。我们针对各种基线模型进行基准测试,包括随机森林,支持矢量机,最近的邻居,梯度增强,极端梯度增强,多层感知器,卷积神经网络和重复的神经网络,并以0.685的0.685和0.685和0.67的0.67和0.67 and and and and and and and and and and and and and and and and 0.675,并表现出优势。此外,注意力重量分析揭示了影响CB2受体活动的关键分子子结构,强调了该模型作为可解释的AI的潜力。这种指出关键分子基序的能力可以简化虚拟筛选,指导铅优化和加快治疗性发育。总的来说,我们的结果展示了先进的AI方法(例如CB2Former)在提供准确的预测和可操作的分子见解方面的变革潜力,从而促进了药物发现中的跨学科合作和创新。
今天,世界上每年发生了超过800万次大火,这些大火的主要部分,30-40%,即超过200万大火,与电力部门有关,在全球范围内约有3万人死亡。这主要是由于电缆绝缘材料缺乏防火和现有防火化合物的无效性。当然,今天有必要进行有关防止电缆中短路的研究,从而增加电缆绝缘的热阻力并将其充分定位。在全球电力部门的经验中,人们越来越多地注意火焰电缆,并确保建筑物和结构的消防安全仍然是紧急问题之一。降低聚合物的易燃性和易燃性程度并创建耐火(安全)材料是一个紧迫的问题,需要紧急解决方案,包括电缆行业。