PC12 是同类飞机中制造最精良、飞行最安全的飞机之一。对吗?作者:John Morris 绝对正确!但既然如此,那么为什么在过去一年(2008 年 9 月至 2009 年 8 月)期间,[报告的] 事件(1)/ 事故(4 起致命)不幸增加?当局对所有 PC12 事故(视为已结案)以及美国大多数航空事故给出的主要原因是人为因素或空间定向障碍,通常意味着这是飞行员的错。无论使用何种措辞,将其归咎于飞行员,有时似乎是一个过于简单的借口,而且不公平,尽管将其归咎于其他人(或事物)已成为一种全国性的消遣。然而,与所有其他指责者不同,在提到人为因素的情况下,飞机事故调查的范围及其结论确实指向某种判断或决策错误,而这种错误至少可能导致最终结果。我们都应该意识到导致这一结果的事件“链”,飞行员的行为或不作为可以形成联系或打破这一链条。所以我们又一次在这里讨论决策和风险管理。为什么?在我看来,我们需要另一次审查,也许还需要一个不同的视角。FAA [风险管理手册 - 2009 年 5 月]、AOPA 和其他来源提供了风险管理工具。它们非常有用,至少应该定期参考。但本文将重点关注从不同角度看到的决策和风险管理,即对 PC12 能力可能过度自信,导致决策失误和风险增加。在我多年的教学中,我通常会提到 Pilatus 如何出色地“确保”PC12 的飞行员安全,这意味着消除了许多飞行员可能导致事故/意外的经典方式。但没有人可以完全消除人为因素或消除破坏系统的手段。最终,重力总是占上风。因此,我们希望努力涵盖所有有形因素,并为无形因素做好准备。我很好奇,驾驶员是否会对 PC12 及其功能过于自信。让我们谈谈有形因素。技术是否助长了这种过度自信?当今的技术比以往任何时候都更加神奇,而且变化/改进的速度不是几年,而是几个月。因此,我确实相信,这会产生问题,成为链条中的一个环节,直到飞行员适应更新的可用技术。这方面的例子包括改进的下载天气信息、WAAS 升级的航空电子设备-自动驾驶仪接口,甚至 PC12NG 与 Apex 系统。我所说的调整是指正确理解和利用这些新信息,因为它适用于增强 PC12 的飞行。这也意味着了解这项新技术不那么明显的局限性,从而知道何时使用标准、基本的飞行判断,如果有疑问。另一个有形的是飞行员驾驶 PC12 的一般熟练程度,而不仅仅是仪表熟练程度。FAA 通过改变方法提供了一些帮助
b'假设 S i 是标准形式博弈 G 中局内人 i D 1; : : : ; n 的有限纯策略集,因此 SDS 1 : : : S n 是 G 的纯策略方案集,i .s/ 是局内人选择策略方案 s 2 S 时局内人 i 的收益。我们将在 S 中有支持的混合策略集表示为 SDS 1 : : : S n ,其中 S i 是在 S i 中有支持的局内人 i 的混合策略集,或者等价地,S i 成员的凸组合集。我们用 S i 表示除 i 之外所有局内人的混合策略向量集。如果对于每个 i 2 S i , i .si ; i / > i .s 0 i ; i / ,则我们说 s 0 i 2 S i 被 si 2 S i 强支配。如果对于每个 i 2 S i , i .si ; i / i .s 0 i ; i / ,且对于至少一个 i 的选择,不等式是严格的,则我们说 s 0 i 被 si 弱支配。请注意,一种策略可能不会被任何纯策略强支配,但可能被混合策略强支配。假设 si 对于玩家 i 是一种纯策略,使得玩家 i 的每个 0 i \xc2\xa4 si 都被 si 弱(分别强)支配。我们称 sia 为 i 的弱(分别强)支配策略。如果存在一个所有玩家都使用支配策略的纳什均衡,我们称其为支配策略均衡。一旦我们消除了每个玩家的劣势策略,结果往往是一开始不占优势的纯策略现在占优势了。因此,我们可以进行第二轮消除劣势策略。事实上,这可以重复进行,直到纯策略不再以这种方式被消除。在 \xef\xac\x81nite 游戏中,这将在 \xef\xac\x81nite 轮次之后发生,并且每个玩家总是会剩下至少一个纯策略。如果强(或弱)劣势策略被消除,我们称之为强(或弱)劣势策略的迭代消除。
基于 LDMOS 功率晶体管的可靠 Rohde&Schwarz 放大器设计在 Rohde&Schwarz 的所有 UHF 放大器中均有使用。R&S®VH60xxA 放大器有多种版本。1 W、5 W、50 W 和 100 W 的模块可用于 DVB-T/-H。15 W、30 W、70 W 或 130 W 的功率水平可用于 ATSC。通过组合 R&S®SV8000 UHF 低功率发射机系列的四种放大器版本,可以在 470 MHz 至 86 MHz 的频率范围内实现输出功率水平从 5 W 到 400 W (rms) 的配置。每个放大器都有自己的电源和冷却系统。保护电路监控各个模块中的温度和 VSWR。带有两个、三个或四个耦合器的系统允许您设置冗余系统 - 即使在低功率水平下也是如此。
