显著 [4]。这对于所介绍的飞机尤其重要,因为航程越短,这三个飞行阶段与巡航的比率就越高。另一个优点是由于 C 翼的重量而导致的机翼载荷和弯矩减小。由于机翼上部和垂直部分的向下力和侧向力,弯矩进一步减小。这种配置增加了尾流涡的消散率,从而可以增加机场每小时的起飞和着陆次数。此外,另一个重要优势是可以制造无尾飞机 [5]。几篇论文解释了非平面配置的好处,并将 C 翼与各种翼尖小翼或平面配置进行了比较。与翼尖相比,通过增加 20-30% 的机翼质量,可以减少巡航总阻力 3% [4]。C 翼的形状必须在整个飞行任务的优化过程中确定 [6, 7]。
P180 Avanti II 中的每个组件和系统都经过精心设计,可在所有飞行条件下提供最高水平的效率和安全性。但其成功的真正关键在于先进的设计和许多创新解决方案,其中最重要的是三升力面配置。飞机的前翼有助于升力,因为它是一个固定表面,前翼的俯仰角配置使其始终在主机翼之前失速。由此产生的自动机头下沉效果确保了高迎角下的出色飞行性能。这些空气动力学优势源于飞机的创新设计和构造,使气流在飞机机翼弦的很大一部分上呈层流状。此外,螺旋桨的推力配置可防止螺旋桨湍流干扰飞机机翼的空气动力学,从而降低总阻力并提供比前向螺旋桨飞机高得多的性能。
可变马赫数爬升预测中使用的诱导阻力系数 [Eq (7.34e)] 阻力系数 (Para.5.1) 升力引起的阻力系数(诱导) [Eq (6.12a)] 零升力下的波阻力系数 [Eq (6.17a)] 零升力阻力系数 [Eq (6.17b)] 波阻力系数函数 [Eq (6.17b)] 爬升条件下的有效零升力阻力系数 [Eq (6.15)] 受阻着陆时的有效零升力阻力系数 [Eq (6.16b)] 升力系数 (Para.5.1) 进近升力系数 (Para.6.2.4) 巡航升力系数 (Para.6.2.4) 大迎角时小展弦比机翼的最大升力系数 (Para.6.2.5.2 和表 6.2) 低速时小展弦比机翼的最大升力系数 (第6.2.5.3 和表 6.2) 机动时可用的最大升力系数 (第6.2.4) 最大升力系数 (第6.2.4) 最小总阻力时的升力系数 [Eq (7.14b)] 起飞脱粘状态下的升力系数 (第6.2.4) 俯仰力矩 c6 系数 (第5.1)
架空输电线支撑结构强度的设计受风阻影响很大,其设计主要是为了承受台风期间线路和支撑塔本身承受的荷载(设计风速 40 米/秒)。当它们位于台风经过时会产生强烈局部风的地形中时,会增加风荷载 1),这往往会增加建设成本。导线上的阻力通常占总阻力的 50-70%,导线阻力的任何减少都会减少支撑塔上的负载,从而可以在不影响可靠性的情况下降低成本。作者注意到,圆柱体的阻力系数开始下降时的风速会因表面粗糙度而降低 2) ,而高尔夫球由于表面有凹坑而飞得更远 3) ,因此得出结论:通过关注导体的表面形态,可以在输电线设计的风速范围内降低导体的阻力系数。因此,我们提出了具有减小阻力的导体,其表面设有凹槽(LP 810 毫米 2 减小阻力的导体和 LNP 810 毫米 2 减小噪音和阻力的导体)。我们还进行了高达 80 的风洞实验
摘要:推导出三个简单方程来定义“翼尖小翼的固有气动效率”,该效率与翼尖小翼的水平延伸和翼尖小翼的(相对)高度无关。该固有气动效率允许快速比较翼尖小翼的纯气动形状,而与为特定飞机安装选择的尺寸无关。固有气动效率分 3 个步骤计算:步骤 1:将翼尖小翼造成的相对总阻力减少量转换为翼尖小翼仅对翼展效率因子的假定贡献。步骤 2:如果翼尖小翼也增加了翼展,则其性能将转换为不受翼展增加影响的性能。步骤 3:将翼尖小翼的诱导阻力减少量与水平机翼延伸进行比较。如果翼尖小翼需要例如比水平延伸长三倍才能实现相同的诱导阻力减少,其固有气动效率是倒数或 1/3。定义的翼尖小翼指标是根据文献输入计算得出的。为了进一步评估翼尖小翼,除了减少飞机水平阻力和燃油消耗外,还估计了翼尖小翼引起的质量增加。
摘要:推导出三个简单方程来定义“翼尖小翼的固有气动效率”,该效率与翼尖小翼的水平延伸和(相对)高度无关。通过此固有气动效率,可以快速比较翼尖小翼的纯气动形状,而与为某一飞机安装而选择的翼尖小翼尺寸无关。固有气动效率分 3 个步骤计算:步骤 1:将翼尖小翼带来的相对总阻力减少量转化为翼尖小翼仅对翼展效率因子的假定贡献。步骤 2:如果翼尖小翼也增加了翼展,则其性能将转化为不受翼展增加影响的性能。步骤 3:将翼尖小翼的诱导阻力减少量与水平机翼延伸进行比较。如果翼尖小翼需要比水平延伸长三倍才能实现相同的诱导阻力减少量,则其固有气动效率为倒数或 1/3。翼尖小翼指标的定义是根据文献输入计算得出的。为了进一步评估翼尖小翼,除了飞机阻力和燃油消耗的减少外,还估算了翼尖小翼引起的质量增加。
1. 引言 在现代交通系统中,减阻对于减少能源消耗和污染物排放至关重要。正如 Cheng 等人 [3] 所述,交通运输部门占能源预算的 25%,却排放了全球 10% 以上的温室气体。表面摩擦是造成阻力的一个重要因素,对于商用飞机来说,其总阻力中高达 55% 是由表面摩擦引起的。在过去的几年中,人们提出了各种技术来通过实验和数值方法减少表面摩擦阻力(例如 [5]、[10] 和 [14])。大多数减阻策略都侧重于壁面附近的相干结构,例如准流向涡旋 (QSV) 和速度条纹,这些结构与表面摩擦阻力密切相关。诸如喷出和扫掠等众所周知的事件都与 QSV 密切相关 [13]。最近的研究表明,可以使用相对简单的方案来控制近壁面湍流事件,从而减少表面摩擦。Choi 等人 [4] 对湍流通道流中的主动控制进行了直接数值模拟。他们发现,通过施加吹气和吸气来抵消壁面法向速度,可实现高达 25% 的壁面摩擦减少。此外,他们观察到当检测平面靠近壁面(y + ≈ 10 )时,阻力会减小,而当检测平面距离壁面较远时,阻力会显著增加。Rebbeck 和 Choi [12] 对实时对抗控制进行了风洞实验。他们研究了当使用壁面法向射流对单个扫掠事件施加对抗控制时,边界层的近壁面湍流结构如何变化。他们的结果表明,扬声器执行器产生的壁面法向射流可以有效阻挡扫掠事件期间高速流体的向壁运动。这表明,对壁面湍流进行反向控制可以减少湍流边界层的表层摩擦阻力。最近,Yu 等人 [15] 开发了一种人工智能开环控制系统,用于操纵平板上的湍流边界层,以减少摩擦阻力。边界层的特征是基于动量厚度的雷诺数 Reθ ,等于 1450。该系统由合成射流、壁线传感器和用于无监督学习最优控制律的遗传算法组成。每个合成射流(从矩形流向狭缝中喷出)的速度、频率和驱动相位都可以独立控制。通过使用