密码学可以确保我们的在线互动,交易和信任。为了实现这一目标,理论上还需要确保加密原始图和协议,而且还需要由加密图书馆开发人员在实践中安全地实施。然而,即使对于熟练的专业人员来说,可以安全地实施加密算法也很具有挑战性,这可能会导致脆弱的实施,尤其是侧向通道。为了定时攻击,这是一类严重的侧向通道,存在多种工具,这些工具应帮助加密图书馆开发人员评估其代码是否容易受到时机攻击的影响。先前的工作已经确定,尽管有兴趣编写恒定时间代码,但Cryp-tographic Library开发人员由于总体上缺乏可用性而不会通常使用这些工具。然而,影响这些工具可用性的确切因素仍然不可能。尽管许多工具是在学术背景下开发的,但我们认为值得探索有助于或阻碍其有效使用的因素,而加密图书馆开发人员有效使用[61]。为了评估验证恒定访问性(CT)工具的可用性的原因和损害,我们对24个(后)研究生参与者进行了两部分可用性研究,这些工具跨越了6种工具,这些工具跨越了近似现实世界中用用案例的工具。我们发现,所有研究工具都受到不同程度的类似的US能力问题的影响,没有工具在可用性方面出色,并且可用性问题阻止了它们有效使用。根据我们的结果,我们建议有效验证CT的有效工具需要可用的文档,简单的安装,易于调整的示例,清晰的输出与CT viomelations相对应,以及最小的无创型标记。,我们通过文档,示例和安装脚本1以有限的学术资源来贡献第一步。
福利和承保范围(SBC)文件摘要将帮助您选择健康计划。SBC向您展示了您和计划将如何分享涵盖医疗服务的费用。注意:将单独提供有关此计划成本(称为保费)的信息。这只是一个摘要。有关您的覆盖范围的更多信息,或获取覆盖范围的完整条款的副本,www.molinamarketplace.com,有关通用条款的一般定义,例如允许金额,余额计费,共同账单,共同保险,共同款项,可扣除,提供者,提供者或其他下划线条款,请参见Glosossary。您可以在www.healthcare.gov/sbc-glossary上查看词汇表,或致电1-800-318-2596请求副本。
运输层安全性(TLS)是为了保护客户端服务器通信的基础。但是,它不会将完整性保证扩展到数据真实性的第三方验证。如果客户端要介绍从服务器获得的数据,则无法说服任何其他方都没有篡改数据。tls oracles确保数据真实性超出了客户端服务器TLS连接,以便客户可以从服务器获得数据并确保没有服务器端修改的任何第三方的出处。通常,TLS Oracle在TLS会话中涉及第三方,验证者,以验证客户获得的数据是否已准确。TLS Oracles的现有协议依赖交互式协议,是通信繁重的。我们介绍Origo,这是一个不断通信的TLS Oracle。与先前的工作类似,Origo在TLS会话中介绍了第三方,并提供了一项协议,以确保TLS会话中传输的数据的真实性,而无需没收其机密性。与先前的工作相比,我们依赖于特定于TLS 1.3的复杂详细信息,这使我们能够在零知识证明(ZKP)内证明正确的密钥推导,身份验证和加密。与TLS 1.3的优化相结合,可以在在线阶段进行不断通信的有效协议。我们的工作将在线沟通减少375倍,在线运行时间最多可将在线运行时间降低4。6×,与先前的工作相比。
当前涉及将堆栈压力施加到锂袋细胞的研究表明了性能和终身益处。固定装置用于模仿细胞级别,并常规规定在细胞上的常数位移。这增加了堆栈压力,但也会导致压力变化。尽管如此,施加初始堆栈压力可改善细胞电导率和细胞寿命(Mussa等,2018; Zhou等,2020;Müller等人,2019; Li等,2022,Cannarella和Arnold,2014)。在这项工作中,设计了一个固定装置,该固定装置将恒定压力施加到独立于位移的细胞。固定装置使用气动施加恒定的堆栈压力,独立于弹性和塑料肿胀。使用混合脉冲功率表征(HPPC)测试评估受恒定压力夹具和常规位移固定装置约束的细胞,以测量内部电阻和最大可交付功率。应用多个堆栈压力来研究压力在操作条件上的压力方差以及恒定压力和基于恒定位移的方法之间的性能。将所有测试与没有施加堆栈压力的对照案例进行比较。基于压力的恒定方法减少了充电和排放期间的压力变化,减少了放电阻抗并提高了放电功率,但并不能改善电荷性能。恒定压力带来的排放性能益处可能会影响包装设计以提高车辆性能。
摘要。BIKE(位翻转密钥封装)是 NIST 后量子密码标准化过程中一个很有前途的候选方案。它是一种基于代码的密码系统,具有定义简单、底层安全性易于理解和性能优异等特点。该密码系统中最关键的步骤是纠正 QC-MDPC 线性码中的错误。BIKE 团队在标准化过程的第 1 轮和第 2 轮中提出了用于此步骤的位翻转解码器变体。在本文中,我们提出了一种对硬件实现更友好的替代解码器,从而实现与文献相当的延迟区域性能,同时引入了电源侧通道弹性。我们还表明,我们的设计可以使用很少的通用逻辑构建块来加速所有密钥生成、封装和解封装操作。
联系人地址4主要代表4购买信息5产品注册6为什么要注册您的购买?6 How to Register Your Purchase 6 Product Announcement Mailing List 6 EU Declaration of Conformity 8 History of the DS2A 9 Hardware & Controls Overview 10 Major Features 11 Symbols Used 12 Trigger Sources & Input Requirements 12 External Pulse Duration Control 14 Single-Shot Trigger Button 14 Output Characteristics 15 Output Impedance 15 Device Mounting 16 Accessories 16 Batteries 16 Battery Testing 17 Battery Life 17 Battery Replacement 17 Internal View & Jumpers 19 “Single” Jumper 19规格20保修信息22有限保修22获得保修服务22产品更改或中止22参考23常见问题24操作员注26
基于时间的信号处理已经成为超深亚微米混合信号电路设计的一种很有前途的解决方案[1]。基于时间的电路受益于CMOS技术的扩展,因为它不受伴随而来的负面影响(例如晶体管的更差的信噪比和更低的固有增益)的影响。它广泛应用于频率生成(数字锁相环)、电源转换器(脉冲宽度调制DC-DC)、数据转换(基于时间的ADC(TBADC))和节能神经网络加速[1]。在基于时间的信号处理的各种应用中,TBADC引起了极大的关注[2]。TBADC具有友好的数字导向,并且在功耗和芯片面积方面比基于电压的ADC具有潜在优势。最近已经报道了几千兆赫的TBADC[1-3]。[2]提出了一种基于余数系统(RNS)的2GS/s 8位TBADC。RNS量化方法减少了比较器的数量,但功耗仍然很高。 [1] 报道了一种两步 1GS/s 8 位 TBADC,功耗为 2.3mW。与其他千兆赫 TBADC [1] 相比,它实现了更好的能效。然而,由于复杂的两步结构,采样率被限制在 1GHz 以下。值得注意的是,电压时间转换器 (VTC) 性能不佳是这些已发布的高速 TBADC 的瓶颈。VTC 的线性度/动态范围、功耗和带宽之间的现有权衡阻碍了高速低功耗 TBADC 设计的进展。
在本文中,我们研究了容错量子计算所需的空间开销的渐近缩放。我们表明,标准阈值定理中的多对数因子实际上是不需要的,并且存在一个容错结构,它使用的量子比特数仅比理想计算的量子比特数多一个常数因子。这个结果是 Gottesman 推测的,他建议用具有恒定编码率的量子纠错码代替标准阈值定理中的级联码。当时的主要挑战是找到一个合适的量子码系列以及一个即使在噪声综合征下也能工作的高效经典解码算法。效率约束在这里至关重要:请记住,量子比特本质上是有噪声的,并且在解码过程中故障会不断累积。因此,解码器的作用是在整个计算过程中控制错误的数量。
给定一个闭二维流形或曲面上的大小为 L 的环或更一般的 1-循环 r(用三角网格表示),计算拓扑学中的一个问题是它是否与零同源。我们在量子环境中构建和解决这个问题。给定一个可以用来查询闭曲线上边的包含情况的 oracle,我们设计了一个用于这种同源性检测的量子算法,相对于环 r 上边的大小或边数,其运行时间为常数,只需要使用一次 oracle。相比之下,经典算法需要使用 Ω( L ) oracle,然后进行线性时间处理,并且可以通过使用并行算法将其改进为对数时间。我们的量子算法可以扩展以检查两个闭环是否属于同一个同源类。此外,它可以应用于同伦检测中的一个特定问题,即检查闭二维流形上的两条曲线是否不是同伦等价的。
我们还证明了更严格的 bTC 0 ( k ) 电路大小下限,这些下限是确定性解决关系问题所必需的,我们利用这些下限显著减少这种形式量子优势的潜在展示所需的估计资源需求。bTC 0 ( k ) 电路可以计算某些类的多项式阈值函数 (PTF),而这些类反过来可以作为神经网络的自然模型,并表现出增强的表达力和计算能力。此外,对于足够大的 k 值,bTC 0 ( k ) 包含 TC 0 作为子类。主要挑战在于建立经典相关性下限,以及设计获胜概率存在量子经典差距的非局部游戏,以便超越量子位到更高维度。我们通过为多输出 bTC 0 ( k ) 电路开发新的、更严格的多切换引理来应对前一个挑战。我们通过分析一类新的非局部博弈来解决后者,这些博弈以 mod p 计算的方式定义,其特点是经典成功概率与量子成功概率之间存在指数差异。这些技术工具可能具有更普遍和独立的兴趣。