1. 充电过程 IU5365E 采用完整的涓流充电、恒流充电、过充电、浮充 电四个过程进行充电。当电池电压小于涓流点时,系统以 I *20% 充电电流充电;当电池的电压大于涓流点时,系 C C 统以 I 充电电流充电;当电池电压达到所设定的过充电电 CC 压值 , 充电电流逐渐减小,当电流减小到所设定的过充电 结束电流值时,过充电结束,系统进入到浮充电过程 , 浮 充电电压为过充电电压V 的 90% 。 OC 浮充电模式的存在可以弥补由于电池自放电或者负载耗电 所导致的电池能量损失。在浮充电状态,如果输入电源和 电池仍然连接在充电器上,电池电压仍然逐渐下降到所设 置的过充电电压V 的 85% 时,系统会重新恢复充电状态。 OC
Gholamreza Farahani,Mohsen Taherbaneh 空间研究所 伊朗空间局 德黑兰,伊朗 Farahani.gh@irost.org,m.taherbaneh@irost.org 摘要 — 本文介绍了卫星电源子系统 (EPS) 不同方案连接的可靠性比较。EPS 必须能够在所有可能的卫星姿态下为卫星子系统提供足够的电力。EPS 有八种方案可用于供电。在这些方案中,两个主要系统组是峰值功率跟踪 (PPT) 和直接能量传输 (DET) 系统。此外,在每个系统中,我们都有四种不同的连接,即使用并联电池的非稳压总线、使用线性充电电流控制充电控制的非稳压总线、使用恒流充电器的准稳压总线和使用全稳压总线的系统。在本文中,我们将比较不同方案的可靠性,并介绍这两个系统中用于 ESP 的最佳可靠连接。
光伏 (PV) 能量收集已广泛应用于电池充电的能量存储应用中。收集电路有效收集的太阳能越多,充电效率就越高。许多论文使用了不同的 MPPT 方法来增强 PV 收集,这些方法需要 ADC 和 MCU,这不仅成本高昂,而且需要长时间的跟踪。提出了一种用于 20V/5 W 太阳能电池板的具有自适应恒流 (ACC)、恒压 (CV) 和最大功率跟踪 (MPPT) 控制的高压能量收集电路,用于在太阳能电池板的最大功率点变化时对锂离子电池进行恒流充电 (CC) 和恒压 (CV) 充电模式。在不同光强度条件下实施脉冲宽度调制 (PWM) 和脉冲频率调制 (PFM) 以提高效率。由扰动观察 (PBO) MPPT 算法控制的 ACC 模式提高了光源不足或电池电量低时的效率。当电池充满电时,激活 CV 模式可防止锂离子电池过度充电损坏。该能量收集电路采用台积电0.5μm超高压工艺制作,在0.1A~0.3A光电流范围内,该设计的峰值效率达到98%。
摘要:本文利用碳纳米纤维 (CNF)/碳纳米墙 (CNW) 的优点,进行了一项新的合成方法,以改善锂离子电池负极材料的特性。在碳基纳米材料中,CNW 具有低电阻和高比表面积的特点。CNF 具有可拉伸和耐用的优势。使用微波等离子体增强化学气相沉积 (PECVD) 系统以甲烷 (CH 4 ) 和氢气 (H 2 ) 混合气体生长 CNW。将聚丙烯腈 (PAN) 和 N,N-二甲基甲酰胺 (DMF) 搅拌以制备溶液,然后使用静电纺丝法制备纳米纤维。然后使用热板在空气中进行热处理以稳定化。此外,使用快速热退火 (RTA) 在 800 ◦C 下进行 2 小时的热处理以生产 CNF。使用场发射扫描电子显微镜 (FE-SEM) 确认 CNFs/CNWs 负极材料的表面和横截面图像。使用拉曼光谱检查结构特征和缺陷。进行循环伏安法 (CV)、电化学阻抗谱 (EIS) 和恒流充电/放电测试以分析电气特性。合成的 CNFs/CNWs 负极材料具有易于进行氧化和还原反应的 CV 值,并确认了 93 Ω 的低 Rct 值。
高导电性的金属有机骨架 (MOF) 已被证明是一种令人兴奋的储能设备电极材料。然而,大多数 MOF 表现出低电导率,这限制了它们在超级电容器中的使用。为了解决这个问题,采用一种简单的酸处理方法获得纳米花状镍 2- 甲基咪唑骨架 (Ni-MOF),以在不破坏其骨架的情况下提高电导率。用最佳 pH 值为 2 的硫酸 (H 2 SO 4 ) 溶液处理的样品 (Ni-MOF-2) 表现出改善的表面纹理和优异的电化学特性。Ni-MOF-2 样品在 6 M 氢氧化钾 (KOH) 水性电解质中在 1 A/g 时显示出比其他样品高的 467 C/g 的比容量 (C s )。这主要是由于酸处理后 Ni-MOF-2 中的质子传导增强。此外,还使用电池型 Ni-MOF-2 作为正极,使用富含杂原子的活性炭 (O、N、S@AC) 作为负极,制造了混合超级电容器 (HSC) 装置。制造的 HSC 的最大比容量 (C s ) 为 38 mAh/g,比能量 (E s ) 高达 39 Wh/kg,最大比功率 (P s ) 为 11,079 W/kg。此外,HSC 在 10,000 次连续恒流充电/放电 (GCD) 循环中表现出约 87% 的出色循环稳定性。
1.充电模式 FM5012D 用线性方式对电池进行涓流 / 恒流 / 恒压三段式充电。当电池电压低于 V TRKL 时进行涓流充 电;当电池电压高于 V TRKL 时进行恒流充电;当电池电压接近 V BAT-REG 时进行恒压充电,此时充电电流 开始逐渐减小,当电流减小到 I FULL 时,判断电池已经充饱,芯片终止充电,待电池电压降低到 V RECHG 后进行再次充电 (Recharge) 。 2.充电软启动功能 当开始给电池充电时,芯片会控制充电电流逐渐增大到设定值,避免了瞬间大电流冲击引起的各种 问题。 3.充电电流设定 充电电流由内部电路设定为恒流 600 mA, 涓流充电为 60mA, I FULL 为 90 mA 可编程设置充饱电压为 500 mA, 涓流充电为 50mA , I FULL 为 75 mA 当输入供电不足或芯片温度过高时, I IN-LIM 会下降。 4.充饱电压设定 FM5012D 芯片默认充饱电压值为 4.20V 可编程设置充饱电压值为 4.35V 5.输入过压保护 输入电压过高,超过 V IN-OVP 时,芯片会控制关闭充电和升压输出,防止芯片和负载因为过压而损 坏,输入电压正常后充电恢复,风扇驱动输出 FAN 不恢复。 6.充电限流保护 当芯片 VIN 端口电压低于 4.7V 时,芯片进入 VIN 限流状态,充电电流逐渐减小,直至到零。 SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS