酸性环境中的钢腐蚀是经济各个部门的严重问题。必须通过制定有效的腐蚀保护计划来控制它。在这篇综述中,总结了酸溶液中的铁衍生物作为铁抑制剂。首先描述酸性腐蚀和钢抑制钢作为控制腐蚀的手段的腐蚀。 然后引入了恶唑衍生物作为腐蚀抑制剂的可能性。 详细介绍了沙唑衍生物可以防止金属腐蚀的均值。 描述了经典方法和合成新的恶唑的最新趋势,尤其是获得恶唑衍生物的旅程。 侧重于奥沙唑的抑制作用,影响其效率的因素以及与其他抑制作用的比较分析的实验室研究。 也讨论了氧化唑作为石油和天然气,化学加工,汽车,海洋水处理行业的腐蚀抑制剂的工业应用。 对未来研究的关注和可能性以及如何利用奥卡唑来耐腐蚀,将扩大我们对科学界腐蚀的了解。 这项研究证明了恶唑作为腐蚀抑制剂及其重要性的潜力。 它为改善酸性环境中钢的腐蚀处理提供了新的想法。酸性腐蚀和钢抑制钢作为控制腐蚀的手段的腐蚀。然后引入了恶唑衍生物作为腐蚀抑制剂的可能性。详细介绍了沙唑衍生物可以防止金属腐蚀的均值。经典方法和合成新的恶唑的最新趋势,尤其是获得恶唑衍生物的旅程。侧重于奥沙唑的抑制作用,影响其效率的因素以及与其他抑制作用的比较分析的实验室研究。也讨论了氧化唑作为石油和天然气,化学加工,汽车,海洋水处理行业的腐蚀抑制剂的工业应用。对未来研究的关注和可能性以及如何利用奥卡唑来耐腐蚀,将扩大我们对科学界腐蚀的了解。这项研究证明了恶唑作为腐蚀抑制剂及其重要性的潜力。它为改善酸性环境中钢的腐蚀处理提供了新的想法。
关键词:苯噻嗪,抗氧化剂,1,4-二恶烷,自由基氧化,2-丙醇引入苯噻嗪衍生物代表了在化学和医学各个领域广泛使用的重要且有希望的化合物。这些化合物用作有机溶剂中单体氧化和聚合的抑制剂,用于稳定各类的聚合物,甚至在光敏剂[1-3]中。势噻嗪衍生物取决于化合物的化学结构,具有广泛的生物学和药理活性,这决定了它们在医学中的广泛应用[4-8]。基于苯噻嗪衍生物的药物是相似的化学结构的化合物,仅在不同的活性 *相应作者的取代基的性质上有所不同。电子邮件:gulnaz-sharipova@list.ru
• 一次性吸入器,• 甲氧氟烷 3 毫升瓶,• 活性炭 (A/C) 室。准备和管理:• 确保将活性炭 (A/C) 室插入吸入器顶部的稀释孔中。每个瓶子都必须使用新的活性炭室和吸入器• 倾斜甲氧氟烷吸入器并将一个 3 毫升瓶的内容物倒入底座,同时旋转吸入器。请勿使用塑料注射器将瓶内容物转移到吸入器中• 轻轻摇晃以确保甲氧氟烷均匀分散在吸入器内,并在将吸入器交给患者之前擦拭吸嘴• 使用甲氧氟烷时,患者必须躺在床上或推车上• 不得在处方规定的疼痛手术间隙使用甲氧氟烷吸入器。例如:它不可用于在走动时控制疼痛 • 甲氧氟烷吸入器应自行使用,除患者外,其他人不得将其放在脸部/嘴部 • 甲氧氟烷吸入器可连接到标准面罩。如果使用面罩,必须由患者拿着,即不能固定在脸上 • 建议患者以缓解不适为目标,而不是完全消除疼痛 • 将腕带戴在患者的手腕上。识别吸嘴和
pioglitazone和Rosiglitazone是两种口腔血糖降低药物用于治疗2型糖尿病的药物,以自2000年以来在荷兰销售。两者都属于噻唑烷二酮衍生物(TZD)的类别,也称为glitazone或过氧化物酶体增殖物激活受体(PPAR) - G激动剂。应该意识到,除TZD以外的化合物还可以刺激PPAR-G受体。在此评论中,将使用TZD一词。TZD代表具有新的作用机理的新类药物。在欧洲,TZD已被批准用于2型糖尿病,特别是对于仅由饮食和运动控制不足的超重患者,由于禁忌症或不宽容,二甲双胍是不合适的。tzd也已经
ZDENěKDVO营1‡*,Felix Kopp 2‡,Cait M. Costello 17,Jazmin S.Kemp 17,Hao Li 3‡,AnetaVrzalová1‡Martinaštěpánková1,IvetaBartoňková1 1,拉斯·U。 Beck 4,Sandhya Kortagere 11 *,Michelle C. Neary 12、Aneesh Chandran 13、Saraswathi Vishveshwara 13、Maria M. Cavalluzzi 14、Giovanni Lentini 14、Julia Yue Cui 15、Haiwei Gu 16、John C. March 17、Shirshendu Chaterjee 18、Adam Matson 19、Dennis Wright 20、Kyle L. Flannigan 21、Simon A. Hirota 21、R. Balfour Sartor 22、Sridhar Mani 3、* 1 来自帕拉茨基大学细胞生物学和遗传学系,奥洛穆茨 78371,捷克共和国;美国纽约州布朗克斯市阿尔伯特爱因斯坦医学院 2 生物化学系、3 医学、遗传学和分子药理学系及 4 病理学系,邮编 10461; 5 辛辛那提儿童医院医疗中心,俄亥俄州辛辛那提 45229; 6 宾夕法尼亚州立大学农业科学学院兽医与生物医学科学系,宾夕法尼亚州立大学公园,16802,美国; 7 斯洛伐克科学院 BMC 实验内分泌研究所,Dúbravská cesta 9, 845 05 布拉迪斯拉发,斯洛伐克共和国; 8 约翰霍普金斯大学生物系,马里兰州巴尔的摩 21218,美国; 9 北卡罗来纳大学化学系,北卡罗来纳州教堂山 27599; 10 纽约大学医学院病理学系,纽约,NY 10016; 11 美国德雷塞尔大学医学院微生物学和免疫学系,宾夕法尼亚州费城 19129; 12 纽约城市大学亨特学院化学系,纽约 NY 10065; 13 印度科学研究所分子生物物理学部,班加罗尔 560012,印度; 14 巴里阿尔多莫罗大学药学系 - 药学科学,意大利巴里 70125; 15 华盛顿大学环境与职业健康科学系,华盛顿州西雅图 98105; 16 亚利桑那州立大学健康解决方案学院代谢和血管生物学中心,亚利桑那州斯科茨代尔 85259; 17 康奈尔大学生物与环境工程系,纽约州伊萨卡 14853; 18 纽约市立大学城市学院数学系,纽约州,纽约州 10031; 19 康涅狄格大学儿科和免疫学系,康涅狄格州法明顿 06030; 20 康涅狄格大学药学系,康涅狄格州斯托尔斯 06269-3092; 21 卡尔加里大学生理学和药理学系,加拿大阿尔伯塔省卡尔加里 T2N 4N1; 22 胃肠生物学和疾病中心、医学部、胃肠病学和肝病学分部、北卡罗来纳大学教堂山分校,北卡罗来纳州教堂山 27599,美国 $ 现住址:圣埃德蒙学院,西隆,Old Jowai Road,西隆,梅加拉亚邦 793003,印度
1 KOC大学翻译医学研究中心; bcevatemre@ku.edu.tr 2 KOC大学健康科学研究生院; ipekbulut18@ku.edu.tr,aisiklar17@ku.edu.tr 3 KOC大学科学与工程学研究生院; bdedeoglu21@ku.edu.tr 4 KOC大学医学院; hsyed@ku.edu.tr,tuonder@ku.edu.tr
抽象背景NHS的目标是在2032年将其碳排放量减少80%。其策略的一部分是使用对环境有害影响较小的药物。一氧化二氮目前在NHS内广泛使用。一氧化二氮,如果释放到大气中,则具有重大的环境影响。通过penthrox“绿口哨”装置传递的甲氧基氟烷是一种短作用的镇痛药,被认为与一氧化二氮相比具有较小的环境影响。使用制造商,在线资源和LCIA库存生产的数据,对penthrox制造和使用的所有产品和过程的生命周期影响评估(LCIA)。在OpenLCA中分析了这些数据。影响数据与现有的关于一氧化二氮和硫酸吗啡的数据进行了比较。结果该LCIA发现penthrox具有0.84 kg二氧化碳等效的气候变化效应(CO 2 E)。原材料和生产过程促成了penthrox在所有类别中的大部分影响,原材料占气候变化总影响的34.40%。penthrox的气候变化影响减少了CO 2 E的117.7倍。7 mg的100 mg/100 mL硫酸静脉硫酸盐的气候变化效应为0.01 kg CO 2 e。结论该LCIA表明,当专门研究气候变化影响时,penthrox设备的总体“摇篮到宽度”环境影响要好于一氧化二氮。对静脉注射吗啡等效剂量的气候变化影响甚至更低。切换到使用吸入的甲氧基氟烷,而不是在某些临床情况下使用一氧化二氮可以帮助NHS达到其碳排放降低靶标。
摘要:掺杂灯笼的纳米晶体(NCS)能够有效的光子上转换,即吸收长波长光和发射较短的波长光。启用上转换的内部过程是一个复杂的电子过渡和掺杂中心之间的能量转移网络。在这项工作中,我们研究了从β -nayf 4 NCS上的上升转换发射的上升和衰减动力学,并用ER 3+和YB 3+编码。红色和绿色上流排放的上升动力学是非线性的,反映了上转换的非线性性质,并揭示了填充发射状态的机制。激发状态衰减动力学是不符合的。我们使用光子实验揭示了潜在的衰减途径。这些在视觉上揭示了不同上转换途径的贡献,因为每个途径对光学状态的局部密度的系统变化都有明显的响应。此外,光学态的局部密度对仅核心NC的局部密度在质量上与核心 - 壳NC的作用在质量上不同。这是由于产生向上发射的电子水平的喂食与衰减之间的平衡所致。对此处提供的上转换动力学的理解可能会导致更好的成像和传感方法依靠上转换寿命或指导掺杂剂浓度的合理优化以使其更明亮。关键字:胶体纳米晶体,上转换,灯笼离子,激发状态动力学,光学状态的局部密度
浸渍剥离法的优点是它是最温和的测试方法,如果化学物质对冲击敏感,这一点很重要。它还有另一个显著的优点:它可以在一定程度上检测二烷基过氧化物、多过氧化物和环状过氧化物,而其他方法(也许硫酸钛法除外)无法有效检测这些化合物。一些溶剂,特别是异丙醚和二恶烷,可能会形成大量且危险的这些高反应产物。此外,标准的过氧化物去除程序可能会去除所有的氢过氧化物,但会留下危险水平的烷基过氧化物、多过氧化物和环状过氧化物。常规的硫氰酸亚铁和碘法在这种情况下可能会产生假阴性,但浸渍剥离法可能会检测到剩余的过氧化物,尽管可能不是定量的。然而,浸渍剥离法很难用于与水不混溶的低挥发性化学品。
1医学系,剑桥大学CB2 CB2 0QQ,Victor Phillip Dahdaleh Heart and Lung Research Institute,英国; 2,英国剑桥大学,剑桥大学代谢科学与医学研究委员会Wellcome-MRC代谢性疾病部门; 3英国剑桥大学基因组实验室东部和东部基因组实验室组织病理学系; 4 Centro Nacional de Resjuctiones Cardianeculares(CNIC),西班牙马德里; 5荷兰格罗宁根大学医学中心格罗宁根大学; 6看到新加坡国立大学和新加坡国立大学卫生系统的Swee Hock公共卫生学院; 7英国剑桥大学剑桥生物医学校园剑桥医学研究所; 8 Centro de RespucationesBioMédicasen Red de Enfermedades心血管(Cibercv),西班牙马德里; 9西班牙马德里的Centro deResp量目生物学玛格丽塔·萨拉斯(Cibcsic); 10 IIS医院基金会希门尼斯·迪亚兹(Jimenez Diaz),西班牙马德里;和11个巴黎心血管研究中心,巴黎大学,Inserm 970,法国巴黎