K t = 电机扭矩系数,N m/amp K e = 电机反电动势系数,V/(rad/s) V batt = 电池电压,伏特 R tt = 电机电阻(端子到端子),欧姆 J m = 电机和螺旋桨惯性,kg m2 D r = 转子(螺旋桨)直径,米 ρ = 空气密度,kg/m3 T = 螺旋桨推力,N Q = 螺旋桨扭矩,N m C T = 螺旋桨推力常数 C P = 螺旋桨功率常数 Ixx ,I yy ,Izz = 无人机惯性矩,kg m2 m = 无人机质量,kg L x ,L y = 从 CG 到电机的力臂,米 ω x ,ω y ,ω z = 机身轴旋转速度,弧度/秒 ψ,θ,φ = 惯性轴到机身的欧拉角,弧度 u x ,u y , u z = 感测位置处的身体轴速度 u x cg , u y cg , u z cg = 重心处的身体轴速度 ω m = 电机速度,rad/s T d = 硬件更新延迟,惯性测量单元 (IMU) T d 2 = 硬件更新延迟,OptiTrack 反馈 CG = 重心 z cg = OptiTrack 传感器测量点下方的垂直重心距离 G 输出输入 = 从输入到输出的传递函数
在过去十年中,空中机器人已成为帮助人类解决广泛的时间敏感问题的重要平台,2020)。在不同类型的空中机器人中,四型二次运动因其在设计,低成本,较小,尺寸小,轻巧和出色的机动性方面的简单性而对在不确定和混乱的室内环境中的应用引起了兴趣(Emran&Najjaran,2018年)。这些对时间敏感的任务通常需要四肢制定快速决策和敏捷的操作。因此,为了安全地控制这些系统,至关重要的是要准确地对其动力学进行建模和估算,并捕获空气动力和扭矩,螺旋桨相互作用,振动,模型近似和其他现象产生的高度非线性效应。但是,这种效果不能轻易测量或建模,因此通常保持隐藏状态(Saviolo,Li,&Loianno,2022)。此外,在某些空中机器人应用中,该平台可能会赋予外部范围(例如有效负载,操纵器,电缆),这些件将通过改变系统配置(例如质量和惯性矩)来大大改变动态。总体而言,未能建模这种系统配置更改将导致飞行性能的显着降解,并可能导致灾难性故障。为了避免此问题,最近的工作已经调查了使用基于物理学的原理方法进行四型动力学的经典建模,从而导致非线性普通微分方程(ODE)(Loianno,Brunner,McGrath和Kumar,2017年)。但是,这些名义模型仅近似实际的系统动力学,并且不考虑由系统配置的积极操作或修改引起的外部效果。
这个关于工程机制的全面教科书系列伴随着一系列分步解决的机械问题,帮助读者巩固了他们的技能并快速学习。每章都包含一个重要公式的摘要,以进行有效使用。这本书在sn.pub/extras上提供了补充材料。电子书包含超过160个完全解决的静态问题,为工程学生提供了提高他们的技能并获得解决工程问题的经验的机会。它强调寻找解决方案路径并制定基本方程式,涵盖了诸如平衡,重心,桁架,梁,框架,拱形,电缆,工作和势能,静态和动力学摩擦以及惯性矩等主题。作者,Dietmar Gross,JörgSchröder,Peter Wriggers和Wolfgang Ehlers是该领域的著名专家。Gross获得了Rostock大学的工程文凭和博士学位,而Schröder在汉诺威大学学习了土木工程。Wriggers在搬到汉诺威大学之前在达姆施塔特担任土木工程机械师主席,而埃勒斯(Ehlers)是达姆斯塔特大学(University of Darmstadt)的连续机械师教授。他们的研究兴趣集中在现代固体力学,高级材料和连续机械上,重点是理论和以计算机为导向的方法。RalfMüller拥有技术大学的力学文凭和工程学博士学位。他还曾在巴黎的皮埃尔·玛丽(Pierre et Marie Curie)大学担任博士后,并在达姆施塔特大学(University of Darmstadt)担任大三学生,在那里他承担了自己的习惯。自2009年以来,他一直是Kaiserslautern大学应用力学教授,专注于连续力学,微观和配置力学以及数值方法。
简介:冰卫月可能会促进碳质软管和彗星材料的组合[1]。冰冷月亮上的碳质有机物(COM)的起源可能是原始的,它是从原始磁盘的有机库存中获得的[2],或者可能由Fischer-Tropsch-type合成的原位形成[3]。A pre-accretional origin of the organic matter found in carbonaceous chondrites (CC's) from the evolution of molecular cloud ices, followed by aqueous alteration on the parent body could explain the soluble organic matter found in CC's today [4] Organic species have been directly observed on icy satellites such as aliphatic signatures on Ceres [5], and carbonaceous organic matter (COM) has also been successfully以低密度成分的形式建模,以适应大冰卫星和泰坦的质量和惯性矩[6]。在父材料积聚后,在全球早期海洋中,硅酸盐和有机物之间的分化和相互作用导致这些体内各个层的分配。有机物可以在冰冷的月球形成期间通过变质[6]转化,其中有机前体经历了进行性石墨化。被困在岩石岩心中的COM的热解会释放挥发物和碳氢化合物,然后如冥王星所建议的那样将其捕获在气体水合物层中[7]。目前可以形成富含COM的外部岩心的热解释放的有机物[1],供应Enceladus的羽毛,并可能在全球海洋中产生有机富层[2]。创建了一个地球化学模型,以预测有机物种的形成和浓度。这项研究的目的是了解在软骨(硅酸盐富含硅酸盐)和彗星(碳富含碳)材料的水热改变过程中产生的有机物质,如果将这些有机物提取到地下海洋顶部的稀薄的不混溶层。