摘要,监督机器学习方法从生物学家的惯性测量中识别行为模式已成为行为生态学的标准工具。几种设计选择可以影响识别行为模式的准确性。这样的选择是包含或排除在机器学习模型培训数据中包含不仅是单个行为(混合段)组成的细分。目前,常见的实践是在模型培训期间忽略此类段。在本文中,我们检验了以下假设:在模型训练中包括混合段将提高准确性,因为该模型在测试数据中识别它们的表现更好。我们使用在四个加速度计数据数据集上进行了一系列数据模拟,并从四个研究物种(Damaraland mole鼠,Meerkats,Meerkats,Olive Baboons,Polar Bears)获得了一系列数据模拟。结果表明,当大量测试数据是混合行为段(高于10%)时,包括机器学习模型培训中的混合段可提高分类的准确性。这些结果在四个研究物种中是一致的,并且在混合段内的片段长度,样本量和混合物程度的变化稳健。但是,与未经混合段的训练的模型相比,在某些情况下(尤其是在狒狒中)模型(尤其是在狒狒)模型中显示出仅包含单个行为(纯)段的测试数据的准确性降低。在这种情况下,应避免将混合段过量包含在培训数据中。基于这些结果,我们建议当预期分类模型处理大量混合行为细分(> 10%)时,将它们包括在模型培训中是有益的,否则,这是不必要的,但也不有害。当时有一个基础假设培训数据包含的混合段率要比要分类的实际(未观察到的)数据更高 - 可能发生这种情况,尤其是在收集训练数据的情况下,并用于将数据分类并从野外分类。关键字身体加速器,生物遗传,机器学习,动物行为
通过证明宏观导体可以表现出强大的D.C.量子元素的转运性能,整数量子大厅效应(IQHE)[1?–4]是一个重大惊喜。立即承认了这一分类对计量学的重要性[1],并导致了欧姆的重新编号[5?]。量子厅导体的有限频率响应已被计量师进行了深入研究:使用A.C.有限频率F的桥显示了与预期值r k / 2 = h / 2 e 2 [6-10]的仪器电阻r H(f)的出发。然后归因于“固有电感和电容” [11,12]。后来,Schurr等人提出了一个双屏蔽样品,允许使用频率独立的电阻标准[13],但是这些作品留下了这些电容和电感的起源问题。另一方面,量子相干导体的有限频率转运概述,其大小小于电子相干长度,预计将由量子效应支配。对于诸如碳纳米管[14]或石墨烯[15]等低维型电控器,电感纯粹是动力学的。小型超级传导电感器[16,17]现在用于太空工业[18]是基于库珀对的惯性。对于量子相干导体,B˝uttiker及其合作者[19-21]开发的理论将关联L/R或RC时间与Wigner-Smith的时间延迟有关,用于在导体跨导载器散射的情况下。在这封信中,我们在A.C.中证明了这一点。政权,这些显着的预测已通过量子hall r-c [22]和r-l [23,24]在高温温度下的GHz范围内的量子霍尔R-C [22]和R-L [23,24]电路的有限频率入学确定。
EMCORE的DSP-1750和DSP-1760将FOG技术提高到新的性能水平,并使用世界上最小的精密雾,易于整合的外壳或无需用于OEM应用程序的配置。导航级DSP-1760雾包括EMCORE的突破性光子集成芯片(PIC)技术,可提高可靠性和可重复性,并提供1、2或3轴配置的多功能性。单轴和双轴配置都可以使用DSP-1750陀螺仪。这些陀螺仪是具有高带宽和极低噪声性能的各种商业和防御应用的理想选择。
近几十年来,人们对可再生能源的兴趣日益浓厚。电网中通过电力电子连接的可变可再生能源资源数量不断增加,降低了总机械系统惯性。水电等频率调节资源将在平衡可变可再生能源资源方面变得更加重要,对稳定性和性能提出了更高的要求,以维持稳定的电网。本论文涉及非直接电耦合发电机组的机械惯性降低。论文首先描述了当今电网系统惯性情况,并介绍了两种用于估计用于提供合成惯性的电网频率导数的方法和一种用于增强同步发电机机械惯性响应的方法。在小规模实验装置中测试了合成惯性和增强惯性方法,并与北欧电网的测试结果进行了比较。设计并构建了一个全尺寸混合储能系统,使用分频法作为功率控制器。结果表明,基于功率频率导数控制器的合成惯性方法在纳米电网实验装置的正常运行期间实现了更好的电网频率质量。通过模拟和实验测试对结果进行了评估。混合储能解决方案的结果表明,通过使用河流水力发电厂的缓慢运行和电池储能系统进行频率控制储备,可以提高频率质量。
时间的操作方法是相对论理论的基石,正如适当的时间概念所证明的那样。在标准量子力学中,时间是外部阶段。最近,已经尝试了许多尝试在关系框架内延长适当时间的量子力学概念。在这里,我们使用类似的想法与相对论的质量能量等效性一起研究具有内部时钟系统的加速量量子粒子。我们表明,从粒子的内部时钟的角度来看,随之而来的演变是非热的。此结果不依赖于时钟的特定影响。是一个特别的结果,我们证明了两个重力相互作用粒子的有效哈密顿素体从任何一个粒子的时钟的角度都是非热的。
在直流微电网 (dc MG) 中,直流链路电容器非常小,无法提供固有惯性。因此,在负载变化或电力资源波动的不确定波动期间会出现较大的电压偏差。这会导致电压质量下降。为了克服低惯性问题,本文提出了一种快速响应的能量存储系统,例如超级电容器,它可以通过某些特定的控制算法模拟惯性响应。双向直流-直流转换器用于将超级电容器能量存储连接到直流 MG。所提出的控制方案由虚拟电容器和虚拟电导组成。它在内环控制中实现,即电流环控制足够快地模拟惯性和阻尼概念。为了研究直流 MG 的稳定性,推导了一个全面的小信号模型,然后使用系统的根轨迹分析确定了可接受的惯性响应参数范围。通过数值模拟证明了所提出的控制结构的性能。
摘要 - 在本文中,提出了针对临时频率SUP端口的风力涡轮机发电机(WTG)和超级电容器能量系统(ESS)的协调控制方案。惯性控制是通过使用发电机扭矩lim的 - 考虑了WTG系统的安全性,而ESS则释放其能量以补偿涡轮转子恢复过程中突然的活动功率不足。wtg是使用疲劳,空气动力学,结构,湍流(快速)代码进行建模的,该代码识别了风能系统中的涡轮机和AD装饰的机械相互作用的机械载荷。在频率支撑期间,将阻尼控制器扩展到惯性控制中,以抑制涡轮机的严重机械振荡。此外,小信号稳定性分析的结果表明,WTGESS倾向于提高整个多能电网的稳定性。本文的主要贡献将通过利用提出的控制方法来介绍,该方法结合了网格支持能力并维持涡轮机的结构设计的完整性,以进行正常操作。
ballistic missile interceptor (BMI) guanxing feixing guiji 惯性飞行轨迹 ballistic trajectory boshu zhidao daodan; 波束制 导导弹 ; Barak-1 naval SAM balake yi haijun dikong daodan “ 巴拉克 -1” 海 军地空导弹 Baruch Plan [USA] balaqi jihua [Meiguo] 巴拉奇 计划 [ 美国 ] batrachotoxin (BTX) watu 蛙 突 battery daodanlian 导弹连 Battle management command, control and communication (BMC3) zuozhan guanli zhihui, kongzhi he tongxun 作 战管理指挥、控制和通讯 battling behaviour zhandou zhuangtai 战 斗 状 态 beam rider; riding missile boshu zhidao daodan; jiashushi daodan 波束制 导导弹 ; 驾束式导弹
摘要:我们利用 2019 年 5 月至 6 月 30 天内具有真实大气强迫和背景环流的全球 1/25 8 混合坐标海洋模型 (HYCOM) 模拟研究了风致近惯性波 (NIW) 的产生、传播和消散。计算了总场的时间平均近惯性风能输入和深度积分能量平衡项,并将场分解为垂直模式以区分 NIW 能量的辐射和(局部)耗散分量。只有 30.3% 的近惯性风输入投射到前五个模式上,而前五个模式中的 NIW 能量之和占总 NIW 能量的 58%。几乎所有深度积分的 NIW 水平能量通量都投射到前五种模式上。NIW 模式的耗散和衰减距离的全球分布证实,低纬度是高纬度产生的 NIW 能量的汇聚点。发现 NIW 能量的局部耗散部分 q 局部 在整个全球海洋中是均匀的,全球平均值为 0.79。水平 NIW 通量从具有气旋涡度的区域发散,并汇聚在具有反气旋涡度的区域;也就是说,反气旋涡流是 NIW 能量通量的汇聚点 (特别是对于较高模式而言)。大多数未投射到模式上的残余能量在反气旋涡流中向下传播。全球近惯性风能输入量在30天内为0.21TW,其中只有19%传输到500米深度以下。
不断增加的碳排放率和对全球环境的持续破坏为可再生能源的实施铺平了道路,无论其性质如何不稳定。探索在孤立区域开发具有最低能源成本的合适的综合可再生能源(IRE)模型已成为最大的挑战之一。在目前的工作中,提出了一种由光伏、生物质和沼气系统组成的 IRE 模型,用于离网孤立区域电气化。为了强调建模的经济方面,平准化能源成本(LCE)已被作为重要因素。采用了基于自适应惯性权重的粒子群优化(PSO w)技术来降低发电总成本。正在考虑的四个区块的能源成本分别为 4.48 卢比/千瓦时、4.52 卢比/千瓦时、4.57 卢比/千瓦时和 4.49 卢比/千瓦时。结果表明,与研究区域现有的家庭能源成本 6.70 卢比/千瓦时(>250 千瓦时)相比,能源成本极低。