摘要 量子计算是计算领域的新兴领域之一,目前人们对其未来发展充满期待。然而,人们对其实际前景仍存有疑虑。一方面,业界不愿投资量子计算。主要原因是硬件成本高,而且目前商用量子计算机的潜力还停留在实验阶段。另一方面,研究界对创建和编程强大而可靠的量子计算机的可行性存在争议。拥有具有合理数量量子比特的可靠硬件的可能性似乎还很遥远。最后,当前的量子编程工具仍然处于逻辑门级别,这限制了创建真正复杂的量子软件系统的可能性。如果我们回顾过去,这种情况让人想起 60 年代经典计算经历的软件危机。本演讲从这个类比开始,分析了过去 60 年软件工程领域的进步和经验教训,提出了有助于发展未来量子软件工程的方向。
驾驶着通用防务电动 Silverado ZH2 卡车驶上 C-130 的坡道,军士长罗恩·杰克逊小心翼翼地操纵车辆,确保连接的 Silent Falcon 陶瓷复合材料拖车与飞机机身对齐。1 他全神贯注地听从装载长的手势,突然想起上次他这样做时,不小心撞到了货舱边缘。“这次不会再这样了,”他想,不禁皱起眉头,想起了另一架飞机的装载长在“认真回顾”飞机损坏情况时使用的“选择性语言”,以及他自己的 Silent Falcon 团队成员对他的嘲讽。“飞机上只有一些油漆,拖车的‘透明涂层’(MXene 电磁干扰涂层)中确实含有钛;所以,拖车甚至没有损坏……”此外,我们之所以要跳伞,是因为多诺维亚导弹即将来袭,而且机场另一边还有叛乱分子的袭击。” 2 杰克逊小心翼翼地把卡车调平,把拖车缓缓地推入飞机,然后把车停了下来。他向装卸长挥了挥手,然后
至少有两个洞穴探险家让人回想起一条重要的地下河,该河流通过Swinnerton Avenue的壁架下方的爬行道,在1960年1月2日和3月19日以下的鸭洞系统东南部东南部的庞然大物洞穴系统上升(见图1)。最近前往Swinnerton Avenue(1980年代和2000年代)的探险未能找到这座爬行道。取而代之的是,探险家回想起爬行道的区域的岩石壁架在通道中的沉积物水平略高。以前在2007年和2010年的探险未能找到爬行道,但确实确定了沉积物的运输特征(槽中带有石膏绒毛的波纹标记和砾石rills;见图2)。但是,要使沉积物隐藏爬网,它一定发生在1960年代和1980年代之间,并且在Swinnerton水平上沉积物的宇宙源性约会表明它们已经在地下地下了约250万年(Granger等,2001)。此外,根据USGS计量站BRKN2的记录,肯塔基州布朗斯维尔(Brownsville)的猛mm洞以南,这是1905年以来最大的洪水,发生在1937年1月24日,并将绿河升高了44.94英尺(NOAA,2013年)。这远低于200或更多英尺的上升(Palmer 1981)必要的反流Swinnerton Avenue。然而,作者在2003年,2007年和2010年在Swinnerton以下的通道中观察到了最近的有机材料,以及在一个狭窄(无法通行的)通道中流动的水,倾斜地越过鸭子以北的Swinnerton,表明浸润地表水的开放通道流动。这样的流程,特别是在暴风雨事件期间和/或之后的强度时,可能会在洞穴内移动沉积物。在猛mm象上层的局部定位的风化高层沉积物传输可以用特纳大道上的一组著名的“沙丘”来指示,并且通过在Swinnerton本身观察到的波纹标记槽中石膏绒毛的优先出现(图2)。在猛mm象上层的局部定位的风化高层沉积物传输可以用特纳大道上的一组著名的“沙丘”来指示,并且通过在Swinnerton本身观察到的波纹标记槽中石膏绒毛的优先出现(图2)。
自 2022 年 11 月推出 ChatGPT(可以说是最先进的 AI 共同创作工具)以来,人们可以说教育受到了重大影响。在这个让人想起互联网早期的新时代,我们有机会从过去的经验中学习并适应新兴技术。在承认潜在好处的同时,积极应对相关风险至关重要,尤其是在学术诚信方面。缓解策略包括彻底禁止等极端措施,以及将 AI 整合到评估中等细致入微的方法。一些教育工作者正在转向评估学习者评估、批评和修改的能力,而不仅仅是为他们的作业生成“文本”。因此,修改评估的一种趋势正在出现,它不仅强调和奖励提交的材料本身,也强调和奖励过程。关于使用此类工具的规则,清晰且沟通良好的说明至关重要。这些界限是与学生展开讨论的基础,阻止他们利用这些工具并使他们远离抄袭。这些方法将有助于解决将人工智能工具融入教育的复杂性,同时保持道德标准。
这是《数量级》的第三版,简明扼要地介绍了美国国家航空咨询委员会 (NACA) 及其继任机构美国国家航空航天局 (NASA) 的历史。在航天飞机重返太空、重振美国自豪感的时代,这一版让我们回想起我们第一次离开地球表面的情景,并纪念 NACA 成立 75 周年——这是我们第一个推动人类动力飞行发展的国家机构。在不到半个世纪的时间里,美国从大西洋沿岸基蒂霍克的沙丘发展到广阔的“新海洋”——太空。这种航行所需的技术变革速度如此之快,尤其是在过去的四分之一世纪里,以至于我们很容易忘记航空研究和开发——无论是在推进、结构、材料还是控制系统方面——为高效可靠的民用和军用飞行能力提供了根本基础。因此,美国国家航空航天局 (NASA) 的《数量级》这一版本不仅更新了历史记录,而且使航空学在该机构的历史和人类最迷人和最持续的航行中恢复了应有的地位,这是非常恰当的。
学习者应该能够绘制氨基酸的一般公式,并识别氨基(碱性),羧基(酸性)和R(可变)组。蛋白质是氨基酸的聚合物,其中有二十种类型的蛋白质在蛋白质中编码,而R组则不同。学习者不会回想起氨基酸的名称,但可以预期将它们识别为结构公式和显示R组的合适表。学习者应能够鉴定蛋白质结构各种水平的R组之间的肽,二硫化物,离子,氢键和疏水相互作用。学习者应熟悉表示蛋白质结构的不同方法,包括色带图和识别分子区域为具有主要结构的区域,例如氨基酸的序列,二级结构,例如α螺旋,β褶皱的床单,三级结构,例如多肽链和第四纪结构的进一步折叠是一个以上粘合在一起的多肽链。蛋白质内的键合影响分子的三维结构,因此影响其在细胞和生物中的功能,例如纤维蛋白(例如角蛋白) - 结构功能和球形蛋白(例如酶) - 代谢功能。
摘要 - 强化学习(RL)是顺序决策的有效工具,并且已经在许多具有挑战性的现实世界任务中实现了人类能力。作为多代理系统域中RL的扩展,多代理RL(MARL)不仅需要学习控制策略,而且还需要考虑与环境中与所有其他代理的相互作用,以及不同的系统组件之间的相互影响以及计算资源的分布。这增加了算法设计的复杂性,并对计算资源提出了更高的要求。同时,模拟器对于获取现实数据至关重要,这是RL的基本原理。在本文中,我们首先提出了一系列模拟器指标,并总结了现有基准的功能。第二,为了简化理解,我们回想起基础知识,然后综合了最近对MAL相关的自动驾驶和智能运输系统的高级研究。具体来说,我们检查了他们的环境建模,状态表示,感知单位和算法设计。最终讨论了公开挑战,前景和机遇。我们希望本文能够帮助研究人员整合MARL技术,并触发更有洞察力的想法,以实现智能和自主驾驶。
摘要动物体内的激素信号传导通常涉及直接转录因子-激素相互作用,从而调节基因表达。相比之下,植物激素信号传导最常见的是基于通过转录阻遏物的降解来解除阻遏。最近,我们发现了一种植物激素生长素的非典型信号传导机制,其中生长素直接影响非典型生长素反应因子 (ARF) ETTIN 对靶基因的活性,而无需蛋白质降解。在这里,我们表明 ETTIN 直接结合生长素,导致与 TOPLESS/TOPLESS-RELATED 家族的辅阻遏蛋白分离,随后组蛋白乙酰化并诱导基因表达。这种机制让人想起动物激素信号传导,因为它影响对靶基因的调节活性,并提供了植物中 DNA 结合激素受体的第一个例子。虽然生长素通过促进 Aux/IAA 阻遏物的降解间接影响典型的 ARF,但 ETTIN-生长素直接相互作用允许以可立即逆转的方式在抑制和去抑制染色质状态之间切换。
教区委员会主席的问候亲爱的教区通讯读者,像往年一样,我们基督徒在春天庆祝复活节,作为教会一年中的高潮,每年我们都会重新想起基督教信仰的中心,即上帝之子耶稣基督已经从死里复活,并且活着。在我们这个不再是基督教的社会里,这一点很难理解。对于很多人来说,死后的生活只有在对死者的记忆中才有可能,在对死者的记忆中我们点燃一支蜡烛。我们的教堂里还有一支中心蜡烛,即复活节蜡烛,我们在复活节之夜在复活节之火上点燃它,作为耶稣复活的标志。对于我们基督徒来说,点燃这根复活节蜡烛不仅是为了提醒我们,也是为了让我们明白,复活的耶稣基督永远活着,我们基督徒不仅被邀请记住这一事实,而且还要将其作为信仰事件本身来见证。受到门徒复活信息的启发,我们基督徒可以成为当今人们的“路标”,以便他们能够实现个人的人生目标。泰泽大公教会的院长阿洛伊斯修士用如下的话语总结了复活节对我们基督徒的意义:
摘要 1 为了避免灾难性的气候变化,能源转型需要快速实现全球化。及时的全球能源转型需要迅速开发新技术并在每个国家部署。鉴于全球近四分之一的排放量都来自贸易流动,因此还需要协调跨境供应链的脱碳。国际绿色经济合作 (IGEC) 正在成为各国政府帮助能源转型走向全球的重要工具。一些 IGEC 中的监管合作让人想起深度贸易协定。然而,IGEC 似乎主要发挥着新颖的国际职能。它们促进技术孵化、研发、协调和信息共享,可以理解为在国际层面上推动绿色产业政策。一些 IGEC 中包含的发展融资承诺在国际监管中也是新颖的,尽管似乎源于气候协议承诺。尽管与多边方法相比,IGEC 的双边和多边性质可能会导致效率损失,但总的来说,IGEC 是帮助能源转型走向全球的重要工具。关键词:清洁技术;国际技术合作;贸易与投资;绿色产业政策;绿色供应链;国际绿色经济合作