[8]小松孝徳,秋山広美: ユーザの直感的表现を支援するオノマトペ表现システム,电子情报通信学会论文志 A,Vol.92, No.11, pp.752‒763 (2009).[9] Kanero, J., Imai, M., Okuda, J., Okada, H. and Matsuda, T.: How Sound Symbolism Is Processed in the Brain: A Study on Japanese Mimetic Words, PLOSONE, Vol.9, No.5, pp.1‒8 (2014).[10] Vigliocco, G., Zhang, Y., Del Maschio, N., Todd, R. and Tuomainen, J.: Electrophysiological signatures of English onomatopoeia, Language and Cognition, Vol.12, No.1, pp.15‒35 (2020).
在全球范围内,中风幸存者的残疾率超过 80%,其中上肢运动障碍影响了 85% 以上的个人。为了应对这一挑战,基于运动想象 (MI) 的脑机接口 (BCI) 已成为一种有前途的方法,可将个人想象的运动意图转化为外部设备的控制信号。脑电图 (EEG) 信号因其非侵入性、便携性、高时间分辨率和价格实惠而常用于 MI-BCI。本研究利用了公开可用的脑电图运动/图像数据集 (EEGMMIDB),包括来自 109 名参与者的 64 通道 EEG 记录,采样率为 160 Hz。目的是直接使用长短期记忆 (LSTM) 网络在清理后的 EEG 信号上对手掌和脚的张开/闭合进行分类,从而绕过计算密集且耗时的传统特征提取方法。通过调整与时期和段长度相关的超参数,我们实现了 71.2% 的平均分类准确率。这项研究强调了深度学习方法在生成稳健的控制信号以使用 EEG 信号预测运动意图方面的有效性,从而无需使用费力的特征提取方法。通过利用深度学习模型,MI-BCI 设备可以促进神经康复,尤其是中风患者的神经康复,通过提供运动辅助,使患者能够仅通过想象力来执行动作。
33.2 一款低于 1 µ J/级的集成思维意象与控制 SoC,适用于 VR/MR 应用,具有师生 CNN 和通用指令集架构 Zhiwei Zhong*、Yijie Wei*、Lance Christopher Go、Jie Gu 西北大学,伊利诺伊州埃文斯顿 * 同等署名作者 (ECA) 虚拟现实 (VR) 和混合现实 (MR) 系统,例如 Meta Quest 和 Apple Vision Pro,最近在消费电子产品中引起了极大的兴趣,在游戏、社交网络、劳动力援助、在线购物等元宇宙中掀起了新一波发展浪潮。AI 计算和多模块人类活动跟踪和控制方面的强大技术创新已经产生了身临其境的虚拟现实用户体验。然而,大多数现有的 VR 耳机仅依靠传统的操纵杆或基于摄像头的用户手势进行输入控制和人体跟踪,缺少一个重要的信息来源,即大脑活动。因此,人们对将脑机接口 (BMI) 整合到 VR/MR 系统中以供消费者和临床应用的兴趣日益浓厚 [1]。如图 33.2.1 所示,现有的集成 EEG 通道的 VR/MR 系统通常由 VR 耳机、16/32 通道 EEG 帽、神经记录模拟前端和用于信号分类的 PC 组成。此类系统的主要缺点包括:(1)佩戴麻烦且用户外观不佳,(2)缺乏低延迟操作的现场计算支持,(3)无法根据大脑活动进行实时思维意象控制和反馈,(4)由于 AI 分类导致的功耗高。为了克服这些挑战,这项工作引入了一种思维意象设备,该设备集成到现有的 VR 耳机中,而无需为 VR/MR 系统的思维控制 BMI 增加额外的佩戴负担。本研究的贡献包括:(1)支持 VR/MR 系统现场心智意象控制的 SoC,(2)与现有 VR 耳机无缝集成并优化 EEG 通道选择,以提高用户接受度和体验,(3)具有灵活数据流的通用指令集架构 (ISA),支持广泛的心智意象操作,(4)混淆矩阵引导的师生 CNN 方案,可在 AI 操作期间节省电量,(5)EEG 信号的稀疏性增强以降低能耗。制造了 65nm SoC 测试芯片,并在各种基于心智意象的 VR 控制上进行了现场演示。虽然先前的研究涉及基于 EEG 的癫痫检测或类似的生物医学应用 [2-6],但本研究专注于 VR/MR 环境中的新兴 BMI。得益于低功耗特性和设计的系统级优化,SoC 的数字核心在计算密集型 CNN 操作中实现了 <1μJ/类的能耗。图 33.2.2 显示了 EEG 通道选择和集成到 Meta Quest 2 VR 耳机中,在准确性和用户便利性之间进行了权衡。为了支持各种思维意象任务,8 个 EEG 通道 T3、T5、O1、O2、T6、T4、PZ、和 CZ 被选中并巧妙地融入头带以保持用户的美感。不同的心理任务会激活八个选定通道的子集,例如用于心理意象的 T3/T5/CZ/T4/T6、用于情感(例如情绪)监测的 T5/CZ 或用于稳态视觉诱发电位 (SSVEP) 的 O1/O2/PZ。通道的减少导致三个主要任务的平均准确率略有下降(从 90.4% 下降到 85.2%),但显着提高了用户体验和可用性。带有生理盐水的商用 Hydro-link 电极用于通过头带上的预切孔捕获 EEG 信号。图 33.2.2 还显示了完全集成 SoC 的顶层图。多达 16 个可编程通道的 AFE 用于信号采集和数字化。 AFE 的每个通道包括一个增益为 45 至 72 dB、带宽为 0.05 至 400 Hz 的两级斩波放大器、一个转折频率为 60 Hz 的低通滤波器和一个工作频率为 128 Hz 至 10 kHz 的 8b SAR ADC。用于集成 AI 操作的数字核心包括一个 8×10 处理单元 (PE) 阵列、控制逻辑和相关存储库。带有专门开发的 ISA 的指令存储器为芯片的操作提供全局控制,以支持一系列思维意象任务。实时分类的大脑状态和思维控制命令通过外部蓝牙模块传输到 VR 耳机,以控制 VR 场景。虽然大多数现有研究仅关注固定数据流 [4] 和 CNN 模型 [2,3],但需要高度灵活的计算架构来支持各种思维意象任务。图 33.2.3 显示了专门开发的通用 ISA,用于数据流控制、模型配置、通道选择等。128b 的超宽 ISA 命令用于监督各种计算任务,例如 IIR 滤波器、卷积 (Conv) 层、离散傅里叶变换 (DFT) 和全连接 (FC) 层,具有很高的硬件效率。为了支持不断变化的 AI 模型,每个子任务的配置(例如内核数量、层数、分支目标地址 (BTA)、稀疏性设置等)也集成到 ISA 中,以便高效地调度和执行不同的任务。图 33.2.3 还显示了数字神经处理器的详细架构。8×10 PE 阵列可以灵活地按行或列打开或关闭。 CNN、FC、DFT 和 IIR 滤波操作可以通过在不同数据流中重复使用相同的 PE 阵列来执行,例如,Conv 层的权重固定,或 FC 层和 DFT 的输出固定。与使用大量流水线触发器的传统脉动阵列不同,此设计有意移除了大部分或 O1/O2/PZ 用于稳态视觉诱发电位 (SSVEP)。通道数的减少导致三个主要任务的平均准确度略有下降(从 90.4% 降至 85.2%),但显著提高了用户体验和可用性。使用带有生理盐水的商用 Hydro-link 电极通过头带上的预切孔捕获 EEG 信号。图 33.2.2 还显示了完全集成 SoC 的顶层图。最多 16 个可编程 AFE 通道用于信号采集和数字化。AFE 的每个通道包括一个增益为 45 至 72dB 和带宽为 0.05 至 400Hz 的两级斩波放大器、一个转折频率为 60Hz 的低通滤波器和一个工作频率为 128Hz 至 10kHz 的 8b SAR ADC。集成 AI 操作的数字核心包括 8×10 处理单元 (PE) 阵列、控制逻辑和相关存储库。带有专门开发的 ISA 的指令存储器为芯片的操作提供全局控制,以支持一系列思维想象任务。实时分类的大脑状态和思维控制命令通过外部蓝牙模块传输到 VR 耳机,以控制 VR 场景。虽然大多数现有工作仅关注固定数据流 [4] 和 CNN 模型 [2,3],但需要高度灵活的计算架构来支持各种思维想象任务。图 33.2.3 显示了专门开发的用于数据流控制、模型配置、通道选择等的通用 ISA。128b 的超宽 ISA 命令用于监督各种计算任务,例如 IIR 滤波器、卷积 (Conv) 层、离散傅里叶变换 (DFT) 和全连接 (FC) 层,具有高硬件效率。为了支持不断变化的 AI 模型,每个子任务的配置(例如内核数量、层数、分支目标地址 (BTA)、稀疏度设置等)也集成到 ISA 中,以便高效地调度和执行不同的任务。图 33.2.3 还显示了数字神经处理器的详细架构。8×10 PE 阵列可以灵活地按行或列打开或关闭。CNN、FC、DFT 和 IIR 滤波操作可以通过在不同数据流中重复使用相同的 PE 阵列来执行,例如,Conv 层的权重固定,或 FC 层和 DFT 的输出固定。与使用大量流水线触发器的传统收缩阵列不同,此设计有意消除了大部分或 O1/O2/PZ 用于稳态视觉诱发电位 (SSVEP)。通道数的减少导致三个主要任务的平均准确度略有下降(从 90.4% 降至 85.2%),但显著提高了用户体验和可用性。使用带有生理盐水的商用 Hydro-link 电极通过头带上的预切孔捕获 EEG 信号。图 33.2.2 还显示了完全集成 SoC 的顶层图。最多 16 个可编程 AFE 通道用于信号采集和数字化。AFE 的每个通道包括一个增益为 45 至 72dB 和带宽为 0.05 至 400Hz 的两级斩波放大器、一个转折频率为 60Hz 的低通滤波器和一个工作频率为 128Hz 至 10kHz 的 8b SAR ADC。集成 AI 操作的数字核心包括 8×10 处理单元 (PE) 阵列、控制逻辑和相关存储库。带有专门开发的 ISA 的指令存储器为芯片的操作提供全局控制,以支持一系列思维想象任务。实时分类的大脑状态和思维控制命令通过外部蓝牙模块传输到 VR 耳机,以控制 VR 场景。虽然大多数现有工作仅关注固定数据流 [4] 和 CNN 模型 [2,3],但需要高度灵活的计算架构来支持各种思维想象任务。图 33.2.3 显示了专门开发的用于数据流控制、模型配置、通道选择等的通用 ISA。128b 的超宽 ISA 命令用于监督各种计算任务,例如 IIR 滤波器、卷积 (Conv) 层、离散傅里叶变换 (DFT) 和全连接 (FC) 层,具有高硬件效率。为了支持不断变化的 AI 模型,每个子任务的配置(例如内核数量、层数、分支目标地址 (BTA)、稀疏度设置等)也集成到 ISA 中,以便高效地调度和执行不同的任务。图 33.2.3 还显示了数字神经处理器的详细架构。8×10 PE 阵列可以灵活地按行或列打开或关闭。CNN、FC、DFT 和 IIR 滤波操作可以通过在不同数据流中重复使用相同的 PE 阵列来执行,例如,Conv 层的权重固定,或 FC 层和 DFT 的输出固定。与使用大量流水线触发器的传统收缩阵列不同,此设计有意消除了大部分AFE 的每个通道包括一个增益为 45 至 72 dB、带宽为 0.05 至 400 Hz 的两级斩波放大器、一个转折频率为 60 Hz 的低通滤波器和一个工作频率为 128 Hz 至 10 kHz 的 8b SAR ADC。用于集成 AI 操作的数字核心包括一个 8×10 处理单元 (PE) 阵列、控制逻辑和相关存储库。带有专门开发的 ISA 的指令存储器为芯片的操作提供全局控制,以支持一系列思维意象任务。实时分类的大脑状态和思维控制命令通过外部蓝牙模块传输到 VR 耳机,以控制 VR 场景。虽然大多数现有研究仅关注固定数据流 [4] 和 CNN 模型 [2,3],但需要高度灵活的计算架构来支持各种思维意象任务。图 33.2.3 显示了专门开发的通用 ISA,用于数据流控制、模型配置、通道选择等。128b 的超宽 ISA 命令用于监督各种计算任务,例如 IIR 滤波器、卷积 (Conv) 层、离散傅里叶变换 (DFT) 和全连接 (FC) 层,具有很高的硬件效率。为了支持不断变化的 AI 模型,每个子任务的配置(例如内核数量、层数、分支目标地址 (BTA)、稀疏性设置等)也集成到 ISA 中,以便高效地调度和执行不同的任务。图 33.2.3 还显示了数字神经处理器的详细架构。8×10 PE 阵列可以灵活地按行或列打开或关闭。 CNN、FC、DFT 和 IIR 滤波操作可以通过在不同数据流中重复使用相同的 PE 阵列来执行,例如,Conv 层的权重固定,或 FC 层和 DFT 的输出固定。与使用大量流水线触发器的传统脉动阵列不同,此设计有意移除了大部分AFE 的每个通道包括一个增益为 45 至 72 dB、带宽为 0.05 至 400 Hz 的两级斩波放大器、一个转折频率为 60 Hz 的低通滤波器和一个工作频率为 128 Hz 至 10 kHz 的 8b SAR ADC。用于集成 AI 操作的数字核心包括一个 8×10 处理单元 (PE) 阵列、控制逻辑和相关存储库。带有专门开发的 ISA 的指令存储器为芯片的操作提供全局控制,以支持一系列思维意象任务。实时分类的大脑状态和思维控制命令通过外部蓝牙模块传输到 VR 耳机,以控制 VR 场景。虽然大多数现有研究仅关注固定数据流 [4] 和 CNN 模型 [2,3],但需要高度灵活的计算架构来支持各种思维意象任务。图 33.2.3 显示了专门开发的通用 ISA,用于数据流控制、模型配置、通道选择等。128b 的超宽 ISA 命令用于监督各种计算任务,例如 IIR 滤波器、卷积 (Conv) 层、离散傅里叶变换 (DFT) 和全连接 (FC) 层,具有很高的硬件效率。为了支持不断变化的 AI 模型,每个子任务的配置(例如内核数量、层数、分支目标地址 (BTA)、稀疏性设置等)也集成到 ISA 中,以便高效地调度和执行不同的任务。图 33.2.3 还显示了数字神经处理器的详细架构。8×10 PE 阵列可以灵活地按行或列打开或关闭。 CNN、FC、DFT 和 IIR 滤波操作可以通过在不同数据流中重复使用相同的 PE 阵列来执行,例如,Conv 层的权重固定,或 FC 层和 DFT 的输出固定。与使用大量流水线触发器的传统脉动阵列不同,此设计有意移除了大部分IIR 滤波器、卷积 (Conv) 层、离散傅里叶变换 (DFT) 和全连接 (FC) 层,具有很高的硬件效率。为了支持不断变化的 AI 模型,每个子任务的配置(例如内核数量、层数、分支目标地址 (BTA)、稀疏度设置等)也集成到 ISA 中,以便高效调度和执行不同的任务。图 33.2.3 还显示了数字神经处理器的详细架构。8×10 PE 阵列可以灵活地按行或列打开或关闭。可以通过在不同数据流中重用相同的 PE 阵列来专门执行 CNN、FC、DFT 和 IIR 滤波操作,例如,Conv 层的权重平稳,或 FC 层和 DFT 的输出平稳。与传统的脉动阵列不同,该设计特意移除了大部分IIR 滤波器、卷积 (Conv) 层、离散傅里叶变换 (DFT) 和全连接 (FC) 层,具有很高的硬件效率。为了支持不断变化的 AI 模型,每个子任务的配置(例如内核数量、层数、分支目标地址 (BTA)、稀疏度设置等)也集成到 ISA 中,以便高效调度和执行不同的任务。图 33.2.3 还显示了数字神经处理器的详细架构。8×10 PE 阵列可以灵活地按行或列打开或关闭。可以通过在不同数据流中重用相同的 PE 阵列来专门执行 CNN、FC、DFT 和 IIR 滤波操作,例如,Conv 层的权重平稳,或 FC 层和 DFT 的输出平稳。与传统的脉动阵列不同,该设计特意移除了大部分
摘要 — 在本文中,我们研究了从脑电图 (EEG) 数据中解码跨受试者运动想象 (MI) 的问题。由于各种个体间差异(例如大脑解剖结构、性格和认知特征),多受试者 EEG 数据集呈现出几种领域转变。这些领域转变使多受试者训练成为一项具有挑战性的任务,也阻碍了跨受试者的稳健泛化。受领域泛化技术对于解决此类问题的重要性的启发,我们提出了一种两阶段模型集成架构,该架构由多个特征提取器(第一阶段)和一个共享分类器(第二阶段)构建,我们使用两个新颖的损失项对其进行端到端训练。第一个损失应用课程学习,迫使每个特征提取器专门针对训练对象的子集并促进特征多样性。第二个损失是集成内蒸馏目标,允许集成模型之间协作交换知识。我们将我们的方法与几种最先进的技术进行了比较,在两个大型 MI 数据集(即 PhysioNet 和 OpenBMI)上进行了独立于受试者的实验。我们的算法在 5 倍交叉验证和留一受试者评估设置中均优于所有方法,并且使用的可训练参数数量要少得多。我们证明了我们的模型集成方法结合了课程学习和协作训练的力量,可实现高学习能力和稳健的性能。我们的工作解决了多受试者 EEG 数据集中的域转移问题,为无校准脑机接口铺平了道路。我们将代码公开发布在:https://github.com/gzoumpourlis/Ensemble-MI。索引术语——脑机接口、EEG、运动意象解码、模型集成、域泛化
摘要。目的本研究的目的是研究各种通道注意力机制在脑机接口 (BCI) 领域用于运动想象解码的应用。通道注意力机制可以看作是传统用于运动想象解码的空间滤波器的强大进化。本研究通过将这些机制集成到一个轻量级架构框架中来系统地比较它们,以评估它们的影响。方法我们精心构建了一个简单而轻量的基线架构,旨在无缝集成不同的通道注意力机制。这种方法与以前的研究相反,以前的研究只研究一种注意力机制,通常构建一个非常复杂、有时是嵌套的架构。我们的框架使我们能够在相同情况下评估和比较不同注意力机制的影响。不同通道注意力机制的轻松集成以及低计算复杂度使我们能够在四个数据集上进行广泛的实验,以彻底评估基线模型和注意力机制的有效性。结果我们的实验证明了我们架构框架的强度和通用性,以及通道注意力机制如何在保持基线架构的小内存占用和低计算复杂度的同时提高性能。意义我们的架构强调简单性,提供通道注意机制的轻松集成,同时保持跨数据集的高度通用性,使其成为脑机接口中 EEG 运动意象解码的多功能高效解决方案。
摘要 — 在本文中,我们研究了从脑电图 (EEG) 数据中解码跨受试者运动想象 (MI) 的问题。由于各种个体间差异(例如大脑解剖结构、性格和认知特征),多受试者 EEG 数据集呈现出几种领域转变。这些领域转变使多受试者训练成为一项具有挑战性的任务,也阻碍了跨受试者的稳健泛化。受领域泛化技术对于解决此类问题的重要性的启发,我们提出了一种两阶段模型集成架构,该架构由多个特征提取器(第一阶段)和一个共享分类器(第二阶段)构建,我们使用两个新颖的损失项对其进行端到端训练。第一个损失应用课程学习,迫使每个特征提取器专门针对训练对象的子集并促进特征多样性。第二个损失是集成内蒸馏目标,允许集成模型之间协作交换知识。我们将我们的方法与几种最先进的技术进行了比较,在两个大型 MI 数据集(即 PhysioNet 和 OpenBMI)上进行了独立于受试者的实验。我们的算法在 5 倍交叉验证和留一受试者评估设置中均优于所有方法,并且使用的可训练参数数量要少得多。我们证明了我们的模型集成方法结合了课程学习和协作训练的力量,可实现高学习能力和稳健的性能。我们的工作解决了多受试者 EEG 数据集中的域转移问题,为无校准脑机接口铺平了道路。我们将代码公开发布在:https://github.com/gzoumpourlis/Ensemble-MI。索引术语——脑机接口、EEG、运动意象解码、模型集成、域泛化
摘要 — 脑机接口 (BCI) 为连接人脑和外部设备提供了一条有前途的途径,其解码能力取得了显著进步,这主要得益于日益复杂的技术,尤其是深度学习。然而,由于会话和受试者之间的分布变化,在现实场景中实现高精度仍然是一个挑战。在本文中,我们将探讨在线测试时间自适应 (OTTA) 的概念,以在推理时间内以无监督的方式持续调整模型。我们的方法通过消除在自适应过程中访问源数据的要求来保证隐私的保护。此外,OTTA 通过不需要任何会话或受试者特定的数据来实现无校准操作。我们将使用轻量级架构以及不同的 OTTA 技术(如对齐、自适应批量归一化和熵最小化)来研究脑电图 (EEG) 运动意象解码任务。我们检查了两个数据集和三个不同的数据设置以进行全面分析。我们的适应方法产生了最先进的结果,有可能促使 BCI 解码的迁移学习转向在线适应。索引术语 —BCI、深度学习、跨学科、迁移学习、运动意象、EEG、测试时间适应
在全球范围内,中风幸存者的残疾率超过 80%,其中上肢运动障碍影响了 85% 以上的个人。为了应对这一挑战,基于运动想象 (MI) 的脑机接口 (BCI) 已成为一种有前途的方法,可将个人想象的运动意图转化为外部设备的控制信号。脑电图 (EEG) 信号因其非侵入性、便携性、高时间分辨率和价格实惠而常用于 MI-BCI。本研究利用了公开可用的脑电图运动/图像数据集 (EEGMMIDB),包括来自 109 名参与者的 64 通道 EEG 记录,采样率为 160 Hz。目的是直接使用长短期记忆 (LSTM) 网络在清理后的 EEG 信号上对手掌和脚的张开/闭合进行分类,从而绕过计算密集且耗时的传统特征提取方法。通过调整与时期和段长度相关的超参数,我们实现了 71.2% 的平均分类准确率。这项研究强调了深度学习方法在生成稳健的控制信号以使用 EEG 信号预测运动意图方面的有效性,从而无需使用费力的特征提取方法。通过利用深度学习模型,MI-BCI 设备可以促进神经康复,尤其是中风患者的神经康复,通过提供运动辅助,使患者能够仅通过想象力来执行动作。
摘要 明尼苏达大学的研究人员率先提出了脑控无人机的概念,并由此引发了一系列研究。这些早期的努力为更先进的脑控无人机原型奠定了基础。然而,由于 BCI 信号具有非平稳性和高维性,因此本质上非常复杂。因此,仔细考虑特征提取和分类过程至关重要。本研究引入了一种新方法,将预训练的 CNN 与经典神经网络分类器和 STFT 频谱相结合,形成多层 CNN 模型 (MTCNN)。MTCNN 模型用于解码两类运动想象 (MI) 信号,从而实现对无人机上下运动的控制。本研究的实验阶段涉及四个关键实验。第一个实验使用大量数据集评估了 MTCNN 模型的性能,分类准确率高达 99.1%。第二个和第三个实验针对同一受试者在两个不同的数据集上评估了该模型,成功解决了与受试者间和受试者内差异相关的挑战。 MTCNN 模型在两个数据集上都实现了 99.7% 的出色分类准确率。在第四次实验中,该模型在另一个数据集上进行了验证,实现了 100% 和 99.6% 的分类准确率。值得注意的是,MTCNN 模型在两个 BCI 竞赛数据集上的准确率超过了现有文献。总之,MTCNN 模型展示了其解码与左手和右手运动相关的 MI 信号的潜力,为脑控无人机领域提供了有希望的应用,特别是在控制上下运动方面。此外,MTCNN 模型有可能通过促进该模型与基于 MI 的无人机控制系统的集成,为 BCI-MI 社区做出重大贡献。
摘要 — 由于人类大脑中左右下肢运动的生理表征过于接近,下肢运动想象 (MI) 分类是脑机接口 (BCI) 中一个具有挑战性的研究课题。此外,MI 信号具有严重的受试者特异性。以前的研究中为特定受试者设计的分类方案无法满足通用 BCI 系统中跨受试者分类的要求。因此,本研究旨在建立跨受试者下肢 MI 分类方案。提出了三种新型子带级联公共空间模式 (SBCCSP) 算法来提取具有低冗余度的代表性特征。已根据从执行 MI 任务的受试者中收集的下肢步进式 MI 信号进行了验证。已验证了采用三种 SBCCSP 算法的所提方案具有比其他公共空间模式 (CSP) 变体更好的准确度和运行时间性能,最佳平均准确度为 98.78%。本研究首次研究了基于实验步进式 MI 信号的跨受试者 MI 分类方案。所提出的方案将对开发用于下肢辅助和康复应用的通用 BCI 系统做出重要贡献。