生物传感器是包含生物识别元件的分析设备,可捕获分析物和换能器,以将识别相互作用转换为可测量的信号。生物学识别元件可以是核酸(DNA和RNA),适体,肽,酶,抗体和微生物。生物识别元件的生化特性使生物传感器高度敏感和高度选择性对于检测分析物,在测试样品中存在其他生物活性分子或物种的情况下,最小干扰。传感器将生物识别事件转换为可测量的信号,该信号可能是电化学的(安培计量法,电位计和损伤法),光学的(例如等化性,发光和比色),压电,微力机械等。生物传感器提供了许多有吸引力的优势,包括高灵敏度和特异性,快速响应,相对紧凑的大小以及用户友好且具有成本效益的操作,从而允许时间分析。因此,生物传感器在许多应用领域都有非常有希望的未来,包括疾病和健康监测的早期诊断。
摘要 — 低功耗(1-20 mW)近传感器计算的最新应用需要采用浮点算法来协调高精度结果和宽动态范围。在本文中,我们提出了一种低功耗多核计算集群,该集群利用跨精度计算的细粒度可调原理,以最低的功率预算为近传感器应用提供支持。我们的解决方案基于开源 RISC-V 架构,将并行化和子字矢量化与专用互连设计相结合,能够在内核之间共享浮点单元 (FPU)。在此架构的基础上,我们提供了全面的软件堆栈支持,包括并行低级运行时、编译工具链和高级编程模型,旨在支持端到端应用程序的开发。我们对周期精确的 FPGA 仿真器上的跨精度集群的设计空间进行了详尽的探索,并改变了内核和 FPU 的数量以最大限度地提高性能。正交地,我们进行了垂直探索,以确定在非功能性要求(工作频率、功率和面积)方面最有效的解决方案。我们对一组代表近传感器处理域的基准进行了实验评估,并通过对功耗进行布局布线后分析来补充时序结果。与最先进的技术相比,我们的解决方案在能源效率方面优于竞争对手,在单精度标量上达到 97 Gflop/s/W 的峰值,在半精度矢量上达到 162 Gflop/s/W。最后,一个实际用例证明了我们的方法在满足精度约束方面的有效性。
本期特刊回顾了BCI研究的最新进展,突出了尖端的方法,新颖的应用和跨学科方法,这些方法突破了可能的界限。领先专家的贡献涉及关键主题,例如大脑信号获取,实时处理技术,机器学习算法以及BCI与新兴技术(例如人工智能和机器人技术)的集成。通过汇集不同的观点,该出版物旨在促进合作并激发这个迅速发展的领域的未来进步。
工程纳米材料的出现已为包括医疗保健,工程,制造业,航空航天,建筑,汽车和其他包括医疗保健,工程,制造业,航空航天等新型应用打开了大门。纳米材料的较大表面体积比非常适合靶向功能和感应。化学传感器和生物传感器的特异性和灵敏度可以通过工程纳米材料形状,大小,组成和表面化学的变化来定制。纳米材料生物传感器在医疗保健诊断,食物新鲜度和生物处理等领域都有应用。属于此类别的材料,包括金属,金属氧化物,碳纳米管,2D材料,聚合物,蛋白质或纳米复合材料,可以具有多种组成。化学传感器可用于检测气体和液体,以应用环境保护,工业自动化和安全性。本期特刊涵盖了此类材料的各个方面,从解释材料的工作原理的理论考虑到其综合,表征和应用。
团队将量子传感器放置在薄玻璃纤维的尖端,并将其放在两个葡萄之间。通过闪光绿色激光通过纤维,它们可以使这些原子发红。这种红色发光的亮度揭示了葡萄周围微波场的强度。
摘要:在本文中,我们在将区块链技术与物联网(IoT)和安全框架相结合时演示了创新的多个点。在智能城市环境中物联网设备网络的部署和使用产生了大量数据。这些数据是由多个来源拥有的,这些数据将独立系统用于数据收集,存储和使用会阻碍其价值的利用。区块链作为分布式分类帐,可用于解决用于数据收集和分发的通用系统的开发。智能合约可用于自动化此类网络的所有过程,同时,区块链和行星际文件系统(IPFS)通过匿名和分布式存储保护敏感数据。提议的应用程序,数据和服务的创新和开放的物联网区块链市场提出:(i)提供了以下框架,以便以虚拟货币的形式交换对象的资产(数据和服务); (ii)根据社会和商业环境定义动机激励措施,以使人类和智能对象进行互动。在M-SEC项目的背景下,通过桑坦德和富士泽之间的跨境试验进行了特定市场,从而验证了互操作性,效率和数据保护原则。
摘要。本文介绍了一种基于深度学习的系统,用于实时面罩检测,旨在增强面具合规性至关重要的环境中的公共卫生监测。利用卷积神经网络(CNN)用Tensorflow和Keras构建,模型E ff e ff e ff将工具分类为戴面膜或不戴面膜的模型。数据预处理和八月技术提高了各种输入信息的鲁棒性,从而确保了高性能和概括性。在Google Colab上开发的,该系统利用基于云的资源进行E FFI CIENT模型培训和部署,从而消除了对当地大量硬件的需求。它支持实时图像分析,可扩展用于连续视频监视,使其适用于大规模应用。与Google Drive集成简化了数据管理,简化了更新和部署。该系统提供了一种可访问的解决方案,用于在公共空间中掩盖合规性监视,OFF的准确性,可扩展性和易于部署性。future工作将专注于通过掩码类型的多类分类,自动响应的IoT集成以及Edge设备部署以提高可访问性。该工具展示了AI在促进公共环境中的健康和安全方面的潜力。
通过合规运动,他们的环境,例如pH,[6,7]温度,[8-10]湿度,[11-15]和光[16-18]。他们发挥了巨大的潜力来满足人造肌肉,能量发电机,阀门,握手,游泳者和步行者领域的感测和致动要求。最近,据报道了溶剂蒸气驱动的软驱动器[19-21],并被视为人类 - 环境相互作用的有前途的设备。当前,分子吸收驱动的软致动器通常仅限于水,乙醇和丙酮蒸气,从而阻止其在晚期可穿戴应用中使用。最近对工程智能材料[22-25]及其作为软执行器的应用[26]表现出复杂的三维形状变形,已广泛审查以进行更全面的分析。简而言之,可以通过将非均匀的外部刺激应用于各向同性结构或通过各向异性执行器的概念来诱导3维(3D)变形,而后者是诱导可编程和可控制变形的有利选择。迄今为止,已经报道了一大批杂种结构,例如双层,梯度和图案结构。[27]在本文中,我们通过开发能够以受控方式精确曲线和扭曲的溶剂响应式仿生软执行器来利用这种方法。它们基于Su-8光敏环氧树脂的刚性微纹理,该树脂在聚二甲基硅氧烷(PDMS)薄膜的一个或两个侧面图案化,以模拟生物生物。[30–35]将所得的微型结构软致动器与双层执行器进行比较,该动力器由在挥发性有机化合物(VOC)下膨胀的活性层组成,并沉积在被动层的顶部。PDM属于硅胶类,是高性能溶剂响应式软动力执行器的出色候选材料,因为它固有的机械灵活性和耐用性,可反复变形。PDMS除了在暴露于VOC时肿胀的能力外,还表现出较高的热和湿度稳定性。实际上,PDM经常用于分析化学领域[28],例如作为水性培养基中采样分析物分子的有效矩阵材料。[29]尽管对于应用数量不需要PDM的肿胀,但它作为分子驱动的软设备的驱动材料提供了极好的选择性。据报道,基于PDM的聚合物构造的各种自我折叠微观结构已据报道,驱动机制,包括双层和表面张力驱动结构之间的热,磁性,应力不匹配。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
光束质量,并可以使用光电二极管捕获和分析反射。几个空间分布的微型激光器扫描周围空气中的颗粒,光电二极管测量返回光束的干涉,系统计算发现的空气颗粒的大小和数量。测量过程称为 SMI(自混合干涉)。由于测量是纯光学的,因此无需直接接触空气 - VCSEL 受到小窗格的保护。也不需要用于测量的吸入空气的风扇 - 因此传感器完全无噪音工作,并且无需清洁或维修。通过这种新的测量方法,传感器的体积可以缩小到只有几毫米,使其比所有以前的细尘传感器小 450 倍。博世 Sensortec 的 Peter Ostertag 很高兴:“别在意火柴盒了,新传感器只有火柴头那么大。”该技术使抽油烟机能够在烹饪过程中产生过多细尘时自动调节功率。或者当建筑物中的细尘传感器发出警报时启动通风系统。