这项研究研究了使用市售活性炭(AC)同时回收贵金离子。在通过微波辐射增强的封闭批处理反应器中进行吸附,从而产生高压和高温条件。检查了溶液的交流质量,过程,过程,温度,pH和离子强度的影响。高温,高压和微波辐射被证明是化学激活的有效手段,导致了近100%的吸附效率。建议微波辐射显着增加活性碳表面的局部温度,从而改变吸附机理。与没有微波支持的传统批处理反应堆相比,这种增强导致了更高的回收率。结果证明了该方法有效金属回收的重要潜力。
摘要:血糖的测量受到多种约束的影响;在设计电磁非侵袭性传感器时,必须识别和量化这些约束。第二阶段涉及这些约束的影响的水平。在这项工作中,我们研究了前臂中静脉半径对谐振微波传感器的影响,以测量糖血症。我们使用与微波谐振器接触的提议的组织模型的COMSOL多物理进行了数值模拟。其他一些因素会影响测量,例如温度,灌注,传感器定位和运动,组织异质性和其他生物学活性。传感器必须适合上述约束。由于静脉的大小从一个人变为另一个人,因此传感器看到的介电特性会有所不同。在模拟传感器的共振频率中为不同静脉尺寸的谐振频率所产生的变化证明了这一点。评估的第二个约束是剂量法。应评估任何电磁设备的特定吸收率(SAR),并将其与安全标准中的SAR限制进行比较,以确保用户的安全性。模拟结果与安全标准中的SAR限制非常吻合。
(a) 麻醉期间捕获的高分辨率电生理记录和癫痫发作期间在较长时间间隔内捕获的病理记录。(b) 图表说明了传感器在大鼠大脑的横截面视图中的放置位置,作为模型。(c) 与使用电极收集的信号 (蓝色) 相比,从放大传感器 (红色) 获得的信号表现出更高的信号分辨率和幅度。此外,与植入电极 (黑色) 记录的信号相比,放大传感器成功检测到癫痫发作期间明显的 5-10 Hz 振荡信号,这在时频频谱图中很明显。图片来源:POSTECH
环境可持续性是一个紧迫的全球关注,能源节能和有效利用在其成就中起着关键作用。智能电网技术已成为一种有前途的解决方案,促进能源效率,促进可再生能源整合并促进消费者参与。但是,在这些网格中添加智能传感器有可能大大提高可持续性计划的水平。本文强调了智能网格传感器在解决诸如能源损失,需求响应限制和可再生能源整合之类的挑战中的作用。它说明了这些传感器如何实现实时监控,故障检测和最佳负载管理,以提高电网性能并减少环境影响。这项研究还研究了智能电网传感器的AI如何执行实时数据监视,最佳能量分配以及智能网格传感器的主动决策支持可能会改善环境可持续性。此外,它研究了印度传感器技术的进步,包括班加罗尔BESCOM倡议和塔塔Power-DDL在德里的可再生能源交易等试点项目,以展示其实际应用和结果。智能传感器可准确跟踪能源使用趋势,增强负载分布并推动可再生能源的明智应用。这些传感器通过与客户互动并实现需求响应系统来帮助减少能源浪费和碳排放。具有网格的系统,例如带有传感器的电热水器,可以节省高达29%的能源。这项研究解决了智能传感器在克服传统网格的缺点中的关键作用,并通过对文献进行广泛的分析来保证更具弹性,高效和可持续的能源未来。通过传感器整合可再生能源,可以提高系统效率,降低对化石燃料的依赖,并优化供应和需求。利用物联网(IoT)技术可以精确监视空气质量,用水和资源管理,从而大大改善环境监督。这种整合会导致温室气体排放量最多减少20%,并用水量减少30%。最后,本文讨论了将人工智能与智能网格传感器整合在一起如何增强预测性维护,能源管理和网络安全,从而进一步加强了其部署的案例。
抽象的外观变化是在室外环境中自动驾驶汽车可视定位的最具挑战性问题之一。当前图像与地图中的地标之间的数据关联可能很困难,如果地图是在不同的环境条件下构建的。本文提出了一种解决方案,以构建和使用多条件地图,其中包含在不同条件下记录的序列(白天,夜晚,雾,雪,雨,雨,季节的变化等)。在视觉定位期间,我们利用排名函数从地图中提取最相关的信息。此排名功能旨在考虑车辆的姿势和当前环境状况。在映射阶段,通过不断向地图添加数据来涵盖所有条件,从而导致地图大小的持续增长,进而导致定位速度和性能。我们的地图管理策略是一种增量方法,旨在限制地图的大小,同时使其尽可能多样化。我们的实验是对使用我们的自主班车以及广泛使用的公共数据集收集的真实数据进行的。结果表明,我们的方法在不同的挑战性条件下显着改善了本地化性能。
Stefania Vitale、Hugo Puozzo、Shamil Saiev、Leïla Bonnaud、Antonio Gaetano Ricciardulli 等人。调整石墨烯-聚苯并恶嗪纳米复合材料的压阻行为:面向压力传感应用的高性能材料。材料化学,2023 年,35 (17),第 6909-6919 页。�10.1021/acs.chemmater.3c01191�。�hal-04205527�
近年来,液晶技术的飞速发展引起了人们的广泛关注。液晶(LC)存在于晶体和各向同性液体之间的中间相,同时表现出流动性和各向异性。作为一种高灵敏度、刺激响应性材料,液晶对外界刺激(包括温度、电场、磁场、光和表面活性剂)反应迅速。液晶分子的长程有序性使其可用于传感平台中的光信号放大器。它可以实现对各种目标(例如温度、化学分析物和生物分子)的简单、快速和灵敏的检测。基于液晶的化学传感器和生物传感器被视为最新的传感平台,可用于环境监测、工业和疾病诊断领域。本期特刊旨在整理围绕液晶光学传感技术的最新创新研究和评论论文,这些论文提供了材料、结构、检测技术、器件制造、传感性能和应用方面的最新研究。
• 独特的破裂算法,比传统的信号导数更强大 • 用于 EPD 处理的大量高级算法 • 一键式概念,轻松生成算法 • 可扩展平台(单腔或集群工具) • 快速配方配置,实现强大的端点创建 • 高级设备控制 (AEC) / 过程控制 (APC) (wafer2wafer、Run2Run、Lot2Lot、Clean2Clean) • SQL 数据库,方便进行数据比较和解释 • 不同的用户级别 • 再处理功能以验证过程(EPD) • 统计工具 • 灵活的工具远程连接