Cheraghian 等人 [ 21 – 23 ] 在零样本 3 维模型分类方 面提出了 3 维点云的零样本学习方法、缓解 3 维零样 本学习中枢纽点问题的方法和基于直推式零样本学 习的 3 维点云分类方法,并将它们封装进一个全新 的零样本 3 维点云方法 [ 24 ] 中。以上方法均是利用已 知类样本的点云表征及其词向量对未知类别进行分 类,开创了零样本 3 维模型分类方法。近年来, CLIP 在零样本图像分类上取得了良好的效果,因此有研 究者将 CLIP 应用到零样本 3 维模型分类方法中, Zhang 等人 [ 25 ] 提出了基于 CLIP 的 3 维点云理解 (Point cloud understanding by CLIP, PointCLIP) 模型, PointCLIP 首先将 3 维点云投影成多个深度图,然 后利用 CLIP 的预训练图像编码器提取深度图特 征,同时将类别名称通过 CLIP 预先训练的文本编 码器提取文本特征。但是 PointCLIP 的性能受到深 度图和图像之间的域差异以及深度分布的多样性限 制。为了解决这一问题,基于图像 - 深度图预训练 CLIP 的点云分类方法 (transfer CLIP to Point cloud classification with image-depth pre-training, CLIP2Point) [ 26 ] 将跨模态学习与模态内学习相结合 训练了一个深度图编码器。在分类时,冻结 CLIP 的图像编码器,使用深度图编码器提取深度图特 征,该方法缓解了深度图和图像间的模型差异。用 于 3 维理解的图像 - 文本 - 点云一致性表征学习方法 (learning Unified representation of Language, Im- age and Point cloud for 3D understanding, ULIP) [ 27 ] 构建了一个图像、文本和点云 3 种模态的 统一嵌入空间,该方法利用大规模图像 - 文本对预 训练的视觉语言模型,并将 3 维点云编码器的特征 空间与预先对齐的视觉 - 文本特征空间对齐,大幅 提高了 3 维模型的识别能力。与之相似的是,基于 提示文本微调的 3 维识别方法 (CLIP Goes 3D, CG3D) [ 28 ] 同样使用 3 元组形式确保同一类别的 3 维模 型特征和图像特征之间以及 3 维模型特征和文本特 征之间存在相似性,从而使点云编码器获得零样本 识别的能力。另外, PointCLIP V2 [ 29 ] 在 Point- CLIP 的基础之上,通过利用更先进的投影算法和 更详细的 3 维模型描述,显着提高了零样本 3 维模型 分类准确率。本文采用语义增强 CLIP 解决图像和文 本的语义鸿沟问题,通过在语义层面为图像和文本 提供更多相似的语义信息,使图像和文本对齐更具有 一致性,从而有效提高 3 维模型的零样本分类性能。 2.2 提示工程
(注1)该系列的趋势和波动率(不含货币对冲)根据税前股息再投资基值(扣除信托费用后)计算。税前股息再投资基值是假设分配(税前)在分配时进行再投资而计算的,可能与实际基值不同。此外,增减率与实际投资者收益率不同。 (注2)全球股票为MSCI AC世界指数(包括股息)。全球股票IT板块为MSCI AC世界IT指数(包括股息)。美国股票是标准普尔500指数(包括股息)。这些指数都不是该系列的基准。 (注3)计算本系列资产净值时,外币资产采用资产净值计算日前一天(如遇节假日,则为最近最后一个交易日)的股票价格和资产净值计算日的汇率换算为日元。因此,对于上图中的各个指数,按照该计算方法,根据资产净值计算日前一天的指数值和资产净值计算日的汇率计算日元等值值。 (来源)由外包公司根据彭博社数据创建
[3] LIBOWITZ MR,WEI K,TRAN T,et al.Regional brain volumes relate to Alzheimer's disease cerebrospinal fluid biomarkers and neuropsychometry:A cross-sectional,observational study[J].PLoS One,2021,16(7):e0254332.[4] 王含春 , 汪群芳 , 罗长国 , 等 .磁共振薄层扫描结合人工智能脑结构分割技术分析海马体积辅 助诊断脑小血管病认知功能障碍 [J].全科医学临床与教育 ,2024,22(3):208-211.[5] 姜华 , 宛丰 , 吕衍文 , 等 .2 型糖尿病伴认知功能障碍患者基于体素的脑形态学 MRI 研究 [J].中 国 CT 和 MRI 杂志 ,2018,16(4):22-25.[6] 景赟杭 , 郭瑞 , 常轲 , 等 .2 型糖尿病性认知功能障碍脑结构 MRI 成像研究进展 [J].延安大学学 报(医学科学版) ,2024,22(1):88-91,107.[7] 郭浩 , 和荣丽 .磁共振成像对老年性痴呆患者海马解剖结构的评估价值研究 [J].磁共振成 像 ,2022,13(8):75-79.[8] 罗财妹 , 李梦春 , 秦若梦 , 等 .阿尔茨海默病谱系患者的海马亚区体积损害特征 [J].中风与神经 疾病杂志 ,2019,36(12):1097-1101.[9] 冯伦伦 , 金蓉 , 曹城浩 , 等 .阿尔茨海默病患者认知功能减退的海马亚区结构改变分析 [J].临床 放射学杂志 ,2022,41(10):1819-1824.[10] WEI Y,HUANG N,LIU Y,et al.Hippocampal and Amygdalar Morpho logical Abnormalities in Alzheimer,s Disease Based on Three Chinese MRI Datasets[J].Curr Alzheimer Res,2020,17:1221-1231 . [11] ESTEVEZ S S,JIMENEZ H A,ADNI G.Comparative analy sis of methods of volume adjustment in hippocampal volumetry for the diagnosis of Alzheimer disease[J].Neuroradiol,2020;47(2):161-5.[12] 曾利川 , 王林 , 廖华强 , 等 .结构与功能磁共振成像在轻度认知障碍及阿尔茨海默病中的应 用 [J].中国老年学杂志 ,2021,41(13):2902-2907.[13] KODAM P,SAI S R,PRADHAN S S,et al.Integrated multi-omics analysis of Alzheimer's disease shows molecular signatures associated with disease progression and potential therapeutic targets[J].Sci Rep,2023,13(1):3695.[14] 黄建 , 王志 .复杂网络分析技术在阿尔兹海默症患者脑结构和功能影像中的应用进展 [J].中 国医学物理学杂志 ,2024,41(8):1053-1055.[15] JELLINGER K A.The pathobiological basis of depression in Parkinson disease:challenges and outlooks[J].J Neural Transm(Vienna),2022,129(12):1397-1418.[16] BANWINKLER M,THEIS H,PRANGE S,et al.Imaging the limbic system in Parkinson's disease-A review of limbic pathology and clinical symptoms[J].Brain Sci,2022,12(9):1248.[17] 程秀 , 张鹏飞 , 王俊 , 等 .小脑结构与功能磁共振成像在帕金森病中的研究进展 [J].磁共振成 像 ,2022,13(4):146-149.[18] CUI X,LI L,YU L,et al.Gray Matter Atrophy in Parkinson's Disease and the Parkinsonian Variant of Multiple System Atrophy:A Combined ROI-and Voxel-Based Morphometric Study[J].Clinics(Sao Paulo),2020,75:e1505.[19] LOPEZ A M,TRUJILLO P,HERNANDEZ A B,et al.Structural Correlates of the Sensorimotor Cerebellum in Parkinson's Disease and Essential Tremor[J].Mov Disord,2020,35(7):1181-1188.[20] 鲍奕清 , 王二磊 , 邹楠 , 等 .帕金森病伴疲劳患者的大脑功能与结构磁共振成像研究 [J].临床 放射学杂志 ,2024,43(8):1265-1270.[21] 邹楠 , 王二磊 , 张金茹 , 等 .帕金森病伴疼痛患者大脑皮层厚度改变的结构 MRI 研究 [J].磁共 振成像 ,2024,15(5):13-18,23.[22] 屈明睿 , 高冰冰 , 苗延巍 .帕金森病伴抑郁在脑边缘系统结构及功能改变的 MRI 研究进展 [J].磁共振成像 ,2023,14(12): 127-131.
图 4 系统总体架构 Fig.4 General framework of system 2.2 Amazon 云计算平台技术介绍 在云计算被提出之前,开发者需要按照需求购买存 储设备和计算设备等硬件设施,但是往往由于计算的不 准确性会造成资源的浪费。云计算的基本概念最初是由 Google 公司提出的。使用云计算平台用户不需要购买任 何硬件设施,因为云计算平台直接提供易交付和易扩展 的 IT 服务,如虚拟服务器、远程数据库以及大容量存储 服务。 本文通过制作服务器的 Docker 文件,将服务器部署 于 Amazon 云端。下面就以 AWS [23] ( Amazon Web Services ,亚马逊云服务)的虚拟服务器( Amazon EC2 )、 可扩展的云存储( Amazon S3 )和云端动态数据库 ( Dynamo DB ) 3 种云平台技术做简要介绍。 Amazon EC2 的 Web 服务接口简单,可以轻松获取 和配置容量。使用该服务,可以完全控制计算资源,并 可以在成熟的 Amazon 计算环境中运行。 Amazon EC2 将 获取并启动新服务器实例所需要的时间缩短至几分钟, 当计算要求发生变化时,可以快速扩展计算容量。 Amazon S3 提供一个简明的 Web 服务界面,用户可 通过它随时在 Web 上存储和检索任意大小的数据。使用 Amazon S3 ,用户只需按实际使用的存储量付费,没有最 低费用和准备成本。 DynamoDB 是一种快速、全面受管的 NoSQL 数据库 服务,它能让用户以简单并且经济有效的方式存储和检 索任何数据量,同时服务于任何程度的请求流量。所有 数据条目均存储在固态硬盘( solid state drives , SSD )中, 具有极高的可用性和耐久性。 2.3 农作物的测量和虚拟模型的生成 虚拟农作物建模对象包括水稻和番茄。为了获取水 稻建模所需的相关参数,于 2015 年和 2016 年在浙江杭 州中国水稻研究所进行了相关试验。选取时期为拔节期
美国卫生与公众服务部监察长办公室 (HHS-OIG) 是联邦政府中最大的监察长。该办公室负责打击 HHS 1.3 万亿美元投资组合中的欺诈、浪费和滥用行为。与其他联邦机构一样,该办公室面临着巨大的压力,需要提供现代数字服务并提高任务能力,以保护纳税人免受医疗保健欺诈。建立符合联邦安全和合规准则的现代云基础设施是这一旅程的第一步。VRTL Space 利用基于通用支持系统 (GSS) 的方法来自动化安全合规性,以创建一个预授权的基础平台,该平台具有共享功能和集成安全性,可从一开始就由应用程序继承。这帮助 HHS-OIG 快速评估和授权其云基础设施,并实现新数字服务和高级分析功能的快速部署。该方法帮助 HHS-OIG 提高了开发速度,节省了数百万美元的合同费用,并允许更快地交付任务能力。