我们提出了一种新颖的神经可变形模型 (NDM),旨在从二维稀疏心脏磁共振 (CMR) 成像数据中重建和建模心脏的三维双心室形状。我们使用混合可变形超二次曲面对双心室形状进行建模,该超二次曲面由一组几何参数函数参数化,能够进行全局和局部变形。虽然全局几何参数函数和变形可以从视觉数据中捕捉到总体形状特征,但可以学习局部变形(参数化为神经微分同胚点流)来恢复详细的心脏形状。与传统可变形模型公式中使用的迭代优化方法不同,可以训练 NDM 来学习此类几何参数函数、来自形状分布流形的全局和局部变形。我们的 NDM 可以学习以任意尺度加密稀疏心脏点云并自动生成高质量的三角网格。它还可以隐式学习不同心脏形状实例之间的密集对应关系,以实现准确的心脏形状配准。此外,NDM 的参数直观,医生无需复杂的后处理即可使用。大型 CMR 数据集上的实验结果表明,NDM 的性能优于传统方法。
单光摄像机的惊人发展为科学和工业成像创造了前所未有的机会。但是,这些1位传感器通过这些1位传感器进行的高数据吞吐量为低功率应用创造了重要的瓶颈。在本文中,我们探讨了从单光摄像机的单个二进制框架生成颜色图像的可能性。显然,由于暴露程度的差异,我们发现这个问题对于标准色素化方法特别困难。我们论文的核心创新是在神经普通微分方程(神经ode)下构建的暴露合成模型,它使我们能够从单个观察中产生持续的暴露量。这种创新可确保在Col-Orizers进行的二进制图像中保持一致的曝光,从而显着增强了着色。我们演示了该方法在单图像和爆发着色中的应用,并显示出优于基准的生成性能。项目网站可以在https://vishal-s-p.github.io/projects/ 2023/generative_quanta_color.html
摘要:叶酸受体-α(FR-α)在许多上皮癌中过度表达,包括卵巢癌、子宫癌、肾癌、乳腺癌、肺癌、结肠癌和前列腺癌,但在肾脏、唾液腺、脉络丛和胎盘等正常组织中表达有限。因此,FR-α已成为向FR阳性肿瘤输送治疗剂和成像剂的有希望的靶点。已经开发了一系列基于叶酸的PET(正电子发射断层扫描)放射性药物,用于选择性靶向FR阳性恶性肿瘤。本综述概述了迄今为止关于叶酸衍生的PET放射性结合物的设计、放射合成和用于靶向FR阳性肿瘤的效用的研究进展。本文主要介绍了用氟-18(t 1 / 2 = 109.8 分钟)和镓-68(t 1 / 2 = 67.7 分钟)标记的叶酸放射性结合物的结果,但也讨论了用“外来”和新 PET 放射性核素标记的叶酸,例如铜-64(t 1 / 2 = 12.7 小时)、铽-152(t 1 / 2 = 17.5 小时)、钪-44(t 1 / 2 = 3.97 小时)、钴-55(t 1 / 2 = 17.5 小时)和锆-89(t 1 / 2 = 78.4 小时)。对于肿瘤成像,迄今为止报道的 PET 放射性标记叶酸中,除了 [ 18 F]AzaFol 之外,没有一种完成了从实验室到临床的旅程,该药物在一项多中心首次人体试验中成功用于转移性卵巢癌和肺癌患者。然而,在不久的将来,我们预计会有更多基于叶酸的 PET 放射性药物的临床试验,因为临床对成像和 FR 相关恶性肿瘤的治疗越来越感兴趣。
正电子发射断层扫描(PET)和计算的刻录术(CT)通常共同用于检测肿瘤。PET/CT分割模型可以自动化肿瘤的描述,但是,当前的多模式模型不能完全阐明每种模式中的互补信息,因为它们要么串联PET和CT数据,要么在决策水平上融合它们。为了对抗这一点,我们提出了镜像u-net,它通过将多模式表示形式分配到模态特异性的解码器分支和辅助多模态解码器中,以多模态化的方式代替了传统的融合方法。在这些分支上,镜像u-net标志着一个针对每种模式量身定制的任务,以增强单峰特征,同时保留共享表示中的多模式特征。与以前的方法相比使用了其他方法或多任务学习,Mirror U-net将两个范式结合在一个统一的框架中。我们探索各种任务组合,并检查在模型中共享的哪些参数。我们在Autopet PET/CT和多模式MSD Braintumor数据集上评估了Mirror U-NET,证明了其在多模式分段中的有效性并在两个数据集中实现了先进的性能。代码:https://github.com/zrrrrr1997/ autopet_challenge_mirrorunet
活细胞需要能量,有些细胞比其他细胞需要更多能量。有些细胞的代谢率在几秒钟内从最小变为最大,而有些细胞则是无底洞,需要无节制地持续供应能量。能量底物和氧气的供应以及代谢废物的清除是通过复杂的血管网络来维持的,富含葡萄糖的血浆和充满氧气的红细胞 (RBC) 就是通过血管网络运输的。能量代谢的变化是诊断和监测组织疾病的常用指标,这一事实进一步强调了深入了解能量供应的重要性。大脑也不例外,但它有许多特殊功能和未解之谜。能量需求大约比身体每体积的平均能量需求高出一个数量级。最重要的是,由于大脑的能量储存能力有限,因此必须持续供应氧气和葡萄糖。供应中断几分钟就会对脑细胞造成不可逆转的损害。因此,大脑使用复杂的调节系统来控制其能量供应,该系统涉及壁细胞以及神经元和神经胶质细胞。更清楚地了解单个血管和整个脉管系统水平的血流变化对于揭示这个相互关联的系统如何协调其适应性至关重要。在 PNAS 中,Meng 等人 (1) 介绍了一种强大的超快速方法来改善微血管网络中脑血流的体内测量,这将大大提高双光子显微镜在量化微血管灌注方面的适用性。尽管自 19 世纪末以来我们就知道大脑会局部调节血流以满足局部能量需求的增加 (2, 3),但潜在的血液动力学过程以及细胞间和细胞内的信号通路仍然很大程度上未被发现(有关最近的综述,请参阅参考文献 4 和 5)。并且,在当前背景下需要强调的是,允许以高空间和时间分辨率测量血流的方法有限,但它们对于产生对血液调节微血管方面的新见解至关重要。由于其重要性,研究人员不断开发和应用各种方法来测量脑血流。这些方法基于不同的模式,例如放射性标记扩散化合物、氢扩散和微电极技术、磁共振成像、光谱、光学相干断层扫描、激光散斑成像,以及最近的聚焦超声和光声成像。其中一些方法已达到黄金标准地位,而其他方法则从地图上消失了。1998 年,Kleinfeld 等人 (6) 引入双光子显微镜来追踪单个红细胞。在接受静脉注射荧光葡聚糖以染色血浆的麻醉小鼠中,通过毛细血管短段的千赫兹线扫描来量化位移
Revolutionising Medical Imaging with Computer Vision and Artificial Intelligence Edited by Seema Bhatnagar, Priyanka Narad, Rajashree Das and Debarati Paul This book first published 2024 Cambridge Scholars Publishing Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Copyright © 2024年,Seema Bhatnagar,Priyanka Narad,Rajashree Das,Debarati Paul和本书保留的所有权利。未经版权所有者事先许可,以任何形式或以任何形式或以任何形式(任何形式),以任何形式或以任何形式的方式,以任何形式或以任何形式)复制了本书的一部分,以任何形式或以任何形式或以任何方式传输。ISBN:978-1-0364-1061-2 ISBN(电子书):978-1-0364-1062-9ISBN:978-1-0364-1061-2 ISBN(电子书):978-1-0364-1062-9
扩散模型由于其众多优点已成为一种流行的图像生成和重建方法。然而,大多数基于扩散的逆问题解决方法仅处理二维图像,即使是最近发表的三维方法也没有充分利用三维分布先验。为了解决这个问题,我们提出了一种新方法,使用两个垂直的预训练二维扩散模型来解决三维逆问题。通过将三维数据分布建模为不同方向切片的二维分布的乘积,我们的方法有效地解决了维数灾难。我们的实验结果表明,我们的方法对于三维医学图像重建任务非常有效,包括 MRI Z 轴超分辨率、压缩感知 MRI 和稀疏视图 CT。我们的方法可以生成适合医疗应用的高质量体素体积。代码可在 https://github.com/hyn2028/tpdm 获得
摘要 - 专门的深度学习(DL)加速器和神经形态处理器的出现为将深度和尖峰神经网络(SNN)算法应用于医疗保健和生物医学应用的新企业带来了新的机会。这可以促进医学互联网系统(IoT)系统和护理点(POC)设备的进步。在本文中,我们提供了一个教程,描述了如何使用各种技术,包括新兴的回忆设备,可编程的门阵列(FPGA)和互补的金属氧化物半导体(CMOS),可用于开发有效的DL加速器,以解决各种诊断诊断,模式识别的诊断,信号过程和信号过程中的各种问题。此外,我们探讨了尖峰神经形态处理器如何补充其DL对应物以处理生物医学信号。该教程通过应用于医疗保健领域的大量神经网络和神经形态硬件的大量文献进行了研究。我们通过执行将传感器融合信号处理任务与计算机视觉相结合的传感器融合信号处理任务来标记各种硬件平台。在推理潜伏期和能量方面进行了专用神经形态处理器和嵌入AI加速器的比较。最后,我们对领域的分析进行了分析,并分享了各种加速器和神经形态处理器引入医疗保健和生物医学领域的优势,缺点,挑战和机遇的观点。