摘要 建筑外围护结构中的空气泄漏是建筑物供暖和制冷需求的很大一部分原因。因此,快速可靠地检测泄漏对于提高能源效率至关重要。本文介绍了一种从外部确定建筑外围护结构中空气泄漏的新方法,将锁定热成像和鼓风机门系统的热激发相结合。鼓风机在建筑物内产生周期性的过压,导致外表面(立面)泄漏附近的表面温度发生周期性变化。通过以已知频率激发的温度变化,以激发频率对热图像的时间序列进行傅里叶变换,可得到突出显示泄漏影响区域的幅度和相位图像。红外摄像机的周期性激发和检测称为锁定热成像,广泛用于表征半导体器件和无损检测。激发通常通过光、电或机械能量输入实现。在本研究中,在 75 Pa 压差下,以三个 40 秒的激励周期对外墙进行了测量,总测量时间仅为 2 分钟。在光照、风和云量变化很大的条件下,空气温差为 5 至 7 K 时进行了测量。与最先进的差分红外热成像测量相比,测量结果显示检测质量更高,受环境条件变化的影响更小。该方法仅在激励频率下突出显示振幅图像的变化,从而过滤掉由环境影响引起的变化。因此,低至几开尔文的温差就足够了,可以从外部检查大型外墙。该振幅图像已经比用差分热成像创建的图像更清晰。使用标量积对振幅进行相位加权,可以进一步减少图像中不需要的伪影。关键词 锁定、热成像、鼓风机门、气密性、泄漏检测、建筑围护结构、建筑节能 1 引言 不受控制的气流通过建筑围护结构,造成 30-50% 的建筑物供暖能耗 (Kalamees,2007 年;Jokisalo 等人,2009 年;Jones 等人,2015 年)。因此,气密性评估,特别是快速可靠地定位泄漏,对于减少供暖能源需求至关重要。风扇加压法或鼓风机门测试在多项国际标准 (Deutsches Institut für Normung e. V.,2018 年;ASTM,2019 年) 中有规定,用于测量建筑物的整体气密性。然而,泄漏定位很麻烦,需要
背景:计算机断层扫描 (CT) 仍然是创伤性脑损伤 (TBI) 成像评估的金标准。TBI 本身因其不良影响已成为发展中国家的主要问题。目的:目的是评估患有 TBI 的患者的颅脑计算机断层扫描图像。材料和方法:对 2013 年 11 月 13 日至 2019 年 5 月 31 日期间在尼日利亚乌约大学教学医院因头部受伤而接受颅脑 CT 检查的患者进行了回顾性研究。持续时间与服务中断的不连贯时间无关。应用简单的数据分析评估了患者的人口统计学和 CT 特征。结果:评估了 232 名患者,最小年龄为 6 个月,最大年龄为 78 岁。男性患者占多数,比例为 2.74:1。受影响最大的年龄段为 30-39 岁(23.27%)和 20-29 岁(22.84%)。44 名患者(18.97%)的脑 CT 正常。CT 异常患者中最常见的病变是颅内出血(n = 188,81.03%)。其中,脑外出血(n = 100,53.19%)超过脑内出血(n = 88,46.81%)。一半的脑内出血是多发性的。34.48%(n = 80)的患者出现颅骨骨折。最常见的部位是面骨(n = 24,30.00%),而最少见的部位是枕骨(n = 4,5.00%)。15% 的患者有多处骨折,其中还包括颅底。结论:TBI 在年轻活跃男性中很常见。最常见的病变是伴有外轴偏向的颅内出血。
亲爱的编辑,我们最近在《转化精神病学》上发表了一篇文章,探讨了在全脑水平上评估脑功能的策略 [1]。在这篇评论中,我们介绍了几种方法,从功能性磁共振成像到功能性超声再到钙成像。对于每一种技术,我们都简要介绍了它的发展历史、物理概念、一些关键应用、潜力和局限性。我们得出的结论是,在网络水平上对啮齿动物大脑进行成像的方法正在不断发展,并将增进我们对大脑功能的理解。Zhuo 和同事的一篇评论进一步增加了解决精神病学学科从动物模型到患者的“转化”问题的复杂性 [2]。他们提出,需要彻底审查用于开发精神疾病动物模型的方法,甚至可能需要修改。例如,迄今为止,大多数精神疾病的啮齿动物模型都是使用简单的药物输注 [3] 和/或社会心理刺激 [4] 建立的。然而,关键问题是这些操作如何改变大脑的结构和功能,以及这些模型是否真正反映了人类精神疾病的病理生理学。特别是因为很难评估是否可以说从啮齿动物到人类存在逆向推理。这是一个真实且可以接受的说法。然而,这正是临床前成像旨在实现的。通过绘制动物模型中大脑网络的动态响应,并将其(如果可能)与临床研究中报告的响应进行比较,我们可以获得定量数据和参数,以确定我们的模型是否有效转化 [ 5 ]。如果这些指标表明网络级修改在时间和空间上与在人类中观察到的相似,我们可以利用更具侵入性和更具体的方法来进一步研究动物模型中的大脑记录。否则,我们必须有信心和正确性继续前进并尝试其他解决方案。最近有两个例子。 2019 年,我们证实了小鼠蓝斑核 (LC) 去甲肾上腺素能活性与大量大型脑网络(尤其是突显网络和杏仁核网络)的参与之间存在因果关系 [6]。此外,我们还可以将网络变化与去甲肾上腺素 (NE) 周转的直接标志物以及 NE 受体在整个脑部的分布联系起来。特定脑网络动态与 LC 活性和 NE 受体密度相关的假设源自人类压力研究和药理学研究 [7,8]。然而,由于不可能选择性地刺激人类的 LC,因此十多年来,这一假设一直只是一个假设。
扩散模型由于其众多优点已成为一种流行的图像生成和重建方法。然而,大多数基于扩散的逆问题解决方法仅处理二维图像,即使是最近发表的三维方法也没有充分利用三维分布先验。为了解决这个问题,我们提出了一种新方法,使用两个垂直的预训练二维扩散模型来解决三维逆问题。通过将三维数据分布建模为不同方向切片的二维分布的乘积,我们的方法有效地解决了维数灾难。我们的实验结果表明,我们的方法对于三维医学图像重建任务非常有效,包括 MRI Z 轴超分辨率、压缩感知 MRI 和稀疏视图 CT。我们的方法可以生成适合医疗应用的高质量体素体积。代码可在 https://github.com/hyn2028/tpdm 获得
v3 具有全面的测试程序:台式和测试光束、辐照、NASA 有效载荷任务(A-STEP)的四芯片读数、与 ePIC 的 Pb/SciFi 集成(研发研究和测试文章生产)
基于铁的纳米材料(INM),由于其特殊的磁性,出色的生物相容性和功能,已在肿瘤诊断和治疗中已发展为强大的工具。我们在此处概述了诸如氧化铁纳米颗粒,元素掺杂纳米复合材料和铁基有机框架(MOFS)等INM如何显示多功能性,以改善肿瘤成像和治疗。在成像方面,INM提高了磁共振成像(MRI)和光声成像(PAI)等技术的灵敏度和准确性,并支持多模式成像平台的开发。关于治疗,INM在高级策略中起着关键作用,例如免疫疗法,磁性高温和协同组合疗法,这些疗法有效地克服了肿瘤诱导的耐药性并降低全身毒性。INM与人工智能(AI)和放射线学的整合进一步扩展了其精确肿瘤识别,治疗优化和扩增治疗监测的能力。INM现在将材料科学与先进的计算和临床创新联系起来,以实现下一代癌症诊断和治疗学。
我们提出了一种新颖的神经可变形模型 (NDM),旨在从二维稀疏心脏磁共振 (CMR) 成像数据中重建和建模心脏的三维双心室形状。我们使用混合可变形超二次曲面对双心室形状进行建模,该超二次曲面由一组几何参数函数参数化,能够进行全局和局部变形。虽然全局几何参数函数和变形可以从视觉数据中捕捉到总体形状特征,但可以学习局部变形(参数化为神经微分同胚点流)来恢复详细的心脏形状。与传统可变形模型公式中使用的迭代优化方法不同,可以训练 NDM 来学习此类几何参数函数、来自形状分布流形的全局和局部变形。我们的 NDM 可以学习以任意尺度加密稀疏心脏点云并自动生成高质量的三角网格。它还可以隐式学习不同心脏形状实例之间的密集对应关系,以实现准确的心脏形状配准。此外,NDM 的参数直观,医生无需复杂的后处理即可使用。大型 CMR 数据集上的实验结果表明,NDM 的性能优于传统方法。
自然光未校准光度立体 (NaUPS) 减轻了传统未校准光度立体 (UPS) 方法中严格的环境和光线假设。然而,由于内在的不适定性和高维模糊性,解决 NaUPS 仍然是一个悬而未决的问题。现有工作对环境光和物体材质施加了强有力的假设,限制了更一般场景中的有效性。或者,一些方法利用复杂模型的监督学习,但缺乏可解释性,导致估计有偏差。在这项工作中,我们提出了自旋光未校准光度立体 (Spin-UP),这是一种无监督方法,用于解决各种环境光和物体中的 NaUPS。所提出的方法使用一种新颖的设置,在可旋转的平台上捕获物体的图像,通过减少未知数来减轻 NaUPS 的不适定性,并提供可靠的先验来缓解 NaUPS 的模糊性。利用神经逆向渲染和所提出的训练策略,Spin-UP 可以以较低的计算成本恢复复杂自然光下的表面法线、环境光和各向同性反射率。实验表明,Spin-UP 优于其他监督/无监督 NaUPS 方法,并在合成和真实世界数据集上实现了最先进的性能。代码和数据可在 https://github.com/LMozart/CVPR2024-SpinUP 获得。
