扩散模型由于其众多优点已成为一种流行的图像生成和重建方法。然而,大多数基于扩散的逆问题解决方法仅处理二维图像,即使是最近发表的三维方法也没有充分利用三维分布先验。为了解决这个问题,我们提出了一种新方法,使用两个垂直的预训练二维扩散模型来解决三维逆问题。通过将三维数据分布建模为不同方向切片的二维分布的乘积,我们的方法有效地解决了维数灾难。我们的实验结果表明,我们的方法对于三维医学图像重建任务非常有效,包括 MRI Z 轴超分辨率、压缩感知 MRI 和稀疏视图 CT。我们的方法可以生成适合医疗应用的高质量体素体积。代码可在 https://github.com/hyn2028/tpdm 获得
摘要。宽场成像仪(WFI)是高能天体物理学的高级望远镜(雅典娜)的两种焦平面仪器之一,ESA的下一个大型X射线天文台计划于2030年代初发射。当前的基线光环轨道在L2左右,并且正在考虑太阳 - 地球系统的第二个Lagrangian点。对于潜在的光环轨道,辐射环境,太阳能和宇宙质子,电子和Heions都将影响仪器的性能。对仪器背景的进一步关键贡献是由未关注的宇宙硬X射线背景产生的。重要的是要了解和估算预期的工具背景并研究措施,例如设计模式或分析方法,这可以改善预期的背景水平,以达到具有挑战性的科学要求(<5×10 - 3计数∕ cm 2 ∕ cm 2 kev kev s s in 2至7 kev)。通过考虑到L2处的质子通量的新信息,可以改善Geant4中进行的WFI背景模拟。此外,已对WFI仪器的模拟模型及其在Geant4模拟中采用的周围环境进行了完善,以遵循WFI摄像机的技术开发。©作者。由SPIE发表在创意共享归因4.0未体育许可下。全部或部分分发或复制此工作需要完全归因于原始出版物,包括其DOI。[doi:10.1117/1.jatis.7.3.034001]
禽心和哺乳动物心以类似的方式将血液传递到肺和身体[Sturkie的鸟类生理学,第五版]。鸟类和哺乳动物具有房屋和心室隔s,可以在氧化和脱氧的血液之间分离,并完全分离全身和肺部循环。通过大型骑士静脉从体内从人体返回到右心房。脱氧的血液移至右心室,在该心室被加压以进行肺循环。血液转储其二氧化碳,并通过肺毛细血管获取O2。与哺乳动物一样,新近充氧的血液通过四个大肺静脉回到左心房。含氧血液移至左心室,在那里加压以进行全身循环。
自然光未校准光度立体 (NaUPS) 减轻了传统未校准光度立体 (UPS) 方法中严格的环境和光线假设。然而,由于内在的不适定性和高维模糊性,解决 NaUPS 仍然是一个悬而未决的问题。现有工作对环境光和物体材质施加了强有力的假设,限制了更一般场景中的有效性。或者,一些方法利用复杂模型的监督学习,但缺乏可解释性,导致估计有偏差。在这项工作中,我们提出了自旋光未校准光度立体 (Spin-UP),这是一种无监督方法,用于解决各种环境光和物体中的 NaUPS。所提出的方法使用一种新颖的设置,在可旋转的平台上捕获物体的图像,通过减少未知数来减轻 NaUPS 的不适定性,并提供可靠的先验来缓解 NaUPS 的模糊性。利用神经逆向渲染和所提出的训练策略,Spin-UP 可以以较低的计算成本恢复复杂自然光下的表面法线、环境光和各向同性反射率。实验表明,Spin-UP 优于其他监督/无监督 NaUPS 方法,并在合成和真实世界数据集上实现了最先进的性能。代码和数据可在 https://github.com/LMozart/CVPR2024-SpinUP 获得。
人工智能(AI)和成像技术的最新进展显着改变了肿瘤学的诊断和治疗景观(1-3)。越来越多的成像方式,例如CT,PET,US和MRI,正在越来越多地用于肿瘤成像(4-7),而新兴的跨学科领域(例如MR-LINAC)获得了相当多的牵引力(8,9)。肿瘤学中成像和治疗的这种加速融合强调,迫切需要进一步探索包括放射治疗在内的各种肿瘤学专业的AI和成像以增强癌症护理的作用。应对这种需求,提出了标题为“肿瘤学中的人工智能和成像”的主题,从而汇总了149名领域的作者/专家的19项贡献。这些贡献深入研究了AI和成像在肿瘤诊断和治疗中的潜力,探讨了新兴的AI驱动模型,以进行肿瘤学诊断和预测,并强调了从医学图像中提取定量特征以预测肿瘤行为,治疗反应和患者预后。
摘要:氧与氧气消耗量增加的有限扩散导致大多数固体恶性肿瘤的慢性缺氧。已知这种氧气的稀缺性会诱导辐射势并导致免疫抑制的微环境。碳酸酐酶IX(CAIX)是一种酶,充当低氧细胞中酸性输出的催化剂,是慢性缺氧的内源性生物标志物。这项研究的目的是开发一种放射标记的抗体,该抗体识别出鼠类caix可视化慢性肿瘤模型中的慢性缺氧,并研究这些低氧区域中的免疫细胞群体。将一种抗MCACIS抗体(MSC3)偶联到二乙基三环乙酸乙酸(DTPA),并用依赖二醇标记为111(111英寸)。使用流式细胞仪确定鼠肿瘤细胞上的CAIX表达,并在竞争性结合测定中分析了[111 in] In-MSC3的体外亲和力。进行了体内生物分布研究,以确定体内放射性分布。CAIX +肿瘤分数通过MCAIX微光谱/CT确定,并使用免疫组织化学和自身自显影分析肿瘤微环境。我们表明,[111 in] In-MSC3在体外与表达Caix(Caix +)鼠细胞结合,并在体内积聚在Caix +地区。我们优化了[111 in] In-MSC3用于临床前成像的使用,以便可以将其应用于合成小鼠模型中,并表明我们可以通过Vivo McAix Micropect/CT进行定量区分具有不同CAIX +分数的肿瘤模型。对肿瘤微环境的分析确定这些Caix +区域被免疫细胞浸润较少。这些数据共同表明,McAix Microspect/CT是一种敏感技术,可视化缺氧的Caix +肿瘤区域,在合成小鼠模型中表现出降低免疫细胞的浸润。将来,该技术可能会在针对缺氧或减少缺氧治疗之前或期间可视化CAIX表达。因此,它将有助于优化翻译相关的合成小鼠肿瘤模型中的免疫和放射疗法功效。关键词:碳酸酐酶IX,缺氧,动物成像,免疫学,肿瘤微环境■简介
新的计算工具,具有伪单细胞分辨率组织学(Spotiphy)的现场成像仪,采用机器学习算法来显着改善常规的空间转录组技术。这些技术着眼于捕获基因表达的网格上的预定义的“斑点”。这些本质上是在整个组织段中形成最终基因表达图像的像素。每个位置通常包含多个,通常是异质的细胞,使它们难以分类和分析单个细胞。
在紫外线,可见和红外中心波长中可用10 - 80nm的带宽可用,非常适合生物医学应用和仪器集成193-399nm,400-6999nm,以及700-1650nm的700-1650nm CWL CWL选项可用的传统覆盖物700 - 1650nm带通道干扰档案的传统型号用于范围狭窄的范围。这些过滤器是一系列生物医学和定量化学应用的理想选择。带通滤波器过滤器被广泛用于各种应用中,包括临床化学,环境测试,比色,元素和激光线分离,火焰光度法,荧光和免疫测定。此外,传统涂层700 - 1650nm带通滤波器用于从ARC或气体排放灯中选择离散的光谱线,并将特定线与AR,KR,ND:YAG和其他激光器分离。传统涂层700 - 1650nm带通滤波器通常与激光二极管模块和LED一起使用。
我们提出了一种方法和设置,可提供血液氧合(通过定量光声成像)和血流动力学(通过超声多普勒)的互补三维(3D)图像。所提出的方法不含标签,利用了血液诱导的波动,并在仅有256个元素的稀疏阵列上实施,并以市售的超声电子功能驱动。我们首先实施3D光声波动成像(PAFI)来对鸡胚胎进行图像,并获得血管形态的全部视频图像。我们同时获得具有可比图像质量的3D超声功率多普勒。然后,我们引入了多光谱光声波动成像(MS-PAFI),并证明它可以提供吸收的光学能量密度的定量测量,并具有完全可见性和增强的对比度,与常规的延迟延迟式延迟式多光谱摄影成像相比。我们最终展示了MS-PAFI之间的协同作用和互补性,该MS-PAFI提供了3D定量氧合(SO 2)成像和3D超声多普勒,该成像提供了有关血流动力学的定量信息。MS-PAFI代表了基于模型的反转的有希望的替代方案,其优势是通过使用直接处理方案解决所有可见性人工制品而没有事先和正则化。
