摘要:叶酸受体-α(FR-α)在许多上皮癌中过度表达,包括卵巢癌、子宫癌、肾癌、乳腺癌、肺癌、结肠癌和前列腺癌,但在肾脏、唾液腺、脉络丛和胎盘等正常组织中表达有限。因此,FR-α已成为向FR阳性肿瘤输送治疗剂和成像剂的有希望的靶点。已经开发了一系列基于叶酸的PET(正电子发射断层扫描)放射性药物,用于选择性靶向FR阳性恶性肿瘤。本综述概述了迄今为止关于叶酸衍生的PET放射性结合物的设计、放射合成和用于靶向FR阳性肿瘤的效用的研究进展。本文主要介绍了用氟-18(t 1 / 2 = 109.8 分钟)和镓-68(t 1 / 2 = 67.7 分钟)标记的叶酸放射性结合物的结果,但也讨论了用“外来”和新 PET 放射性核素标记的叶酸,例如铜-64(t 1 / 2 = 12.7 小时)、铽-152(t 1 / 2 = 17.5 小时)、钪-44(t 1 / 2 = 3.97 小时)、钴-55(t 1 / 2 = 17.5 小时)和锆-89(t 1 / 2 = 78.4 小时)。对于肿瘤成像,迄今为止报道的 PET 放射性标记叶酸中,除了 [ 18 F]AzaFol 之外,没有一种完成了从实验室到临床的旅程,该药物在一项多中心首次人体试验中成功用于转移性卵巢癌和肺癌患者。然而,在不久的将来,我们预计会有更多基于叶酸的 PET 放射性药物的临床试验,因为临床对成像和 FR 相关恶性肿瘤的治疗越来越感兴趣。
1 IBM 欧洲研究中心,瑞士苏黎世 2 苏黎世联邦理工学院生物系统科学与工程系,瑞士苏黎世 3 IBM 阿尔马登研究中心,美国加利福尼亚州圣何塞 4 视觉放射学,美国德克萨斯州达拉斯 5 犹他大学健康科学中心放射学和影像科学系,美国犹他州盐湖城 6 塞顿医学中心放射学系,美国加利福尼亚州戴利城 7 阿苏塔医学中心放射学系,以色列特拉维夫 8 本·古里安大学医学院,以色列贝尔谢巴 9 耶路撒冷希伯来大学医学院哈达萨-希伯来大学医学中心放射学系,以色列耶路撒冷 10 盖伊和圣托马斯 NHS 基金会皇家布罗姆普顿和哈里菲尔德医院,英国伦敦 11 切尔西和威斯敏斯特医院,英国伦敦 12 伦敦帝国理工学院国家心肺研究所,英国伦敦 13 布鲁内尔大学健康、医学与生命科学学院伦敦,英国伦敦 14 IBM 海法研究中心,以色列海法 15 耶路撒冷希伯来大学医学院,以色列耶路撒冷 *通信地址:jab@zurich.ibm.com (JB),beymer@us.ibm.com (DB) https://doi.org/10.1016/j.patter.2021.100269
单光摄像机的惊人发展为科学和工业成像创造了前所未有的机会。但是,这些1位传感器通过这些1位传感器进行的高数据吞吐量为低功率应用创造了重要的瓶颈。在本文中,我们探讨了从单光摄像机的单个二进制框架生成颜色图像的可能性。显然,由于暴露程度的差异,我们发现这个问题对于标准色素化方法特别困难。我们论文的核心创新是在神经普通微分方程(神经ode)下构建的暴露合成模型,它使我们能够从单个观察中产生持续的暴露量。这种创新可确保在Col-Orizers进行的二进制图像中保持一致的曝光,从而显着增强了着色。我们演示了该方法在单图像和爆发着色中的应用,并显示出优于基准的生成性能。项目网站可以在https://vishal-s-p.github.io/projects/ 2023/generative_quanta_color.html
摘要:氧与氧气消耗量增加的有限扩散导致大多数固体恶性肿瘤的慢性缺氧。已知这种氧气的稀缺性会诱导辐射势并导致免疫抑制的微环境。碳酸酐酶IX(CAIX)是一种酶,充当低氧细胞中酸性输出的催化剂,是慢性缺氧的内源性生物标志物。这项研究的目的是开发一种放射标记的抗体,该抗体识别出鼠类caix可视化慢性肿瘤模型中的慢性缺氧,并研究这些低氧区域中的免疫细胞群体。将一种抗MCACIS抗体(MSC3)偶联到二乙基三环乙酸乙酸(DTPA),并用依赖二醇标记为111(111英寸)。使用流式细胞仪确定鼠肿瘤细胞上的CAIX表达,并在竞争性结合测定中分析了[111 in] In-MSC3的体外亲和力。进行了体内生物分布研究,以确定体内放射性分布。CAIX +肿瘤分数通过MCAIX微光谱/CT确定,并使用免疫组织化学和自身自显影分析肿瘤微环境。我们表明,[111 in] In-MSC3在体外与表达Caix(Caix +)鼠细胞结合,并在体内积聚在Caix +地区。我们优化了[111 in] In-MSC3用于临床前成像的使用,以便可以将其应用于合成小鼠模型中,并表明我们可以通过Vivo McAix Micropect/CT进行定量区分具有不同CAIX +分数的肿瘤模型。对肿瘤微环境的分析确定这些Caix +区域被免疫细胞浸润较少。这些数据共同表明,McAix Microspect/CT是一种敏感技术,可视化缺氧的Caix +肿瘤区域,在合成小鼠模型中表现出降低免疫细胞的浸润。将来,该技术可能会在针对缺氧或减少缺氧治疗之前或期间可视化CAIX表达。因此,它将有助于优化翻译相关的合成小鼠肿瘤模型中的免疫和放射疗法功效。关键词:碳酸酐酶IX,缺氧,动物成像,免疫学,肿瘤微环境■简介
新的计算工具,具有伪单细胞分辨率组织学(Spotiphy)的现场成像仪,采用机器学习算法来显着改善常规的空间转录组技术。这些技术着眼于捕获基因表达的网格上的预定义的“斑点”。这些本质上是在整个组织段中形成最终基因表达图像的像素。每个位置通常包含多个,通常是异质的细胞,使它们难以分类和分析单个细胞。
在紫外线,可见和红外中心波长中可用10 - 80nm的带宽可用,非常适合生物医学应用和仪器集成193-399nm,400-6999nm,以及700-1650nm的700-1650nm CWL CWL选项可用的传统覆盖物700 - 1650nm带通道干扰档案的传统型号用于范围狭窄的范围。这些过滤器是一系列生物医学和定量化学应用的理想选择。带通滤波器过滤器被广泛用于各种应用中,包括临床化学,环境测试,比色,元素和激光线分离,火焰光度法,荧光和免疫测定。此外,传统涂层700 - 1650nm带通滤波器用于从ARC或气体排放灯中选择离散的光谱线,并将特定线与AR,KR,ND:YAG和其他激光器分离。传统涂层700 - 1650nm带通滤波器通常与激光二极管模块和LED一起使用。
我们提出了一种方法和设置,可提供血液氧合(通过定量光声成像)和血流动力学(通过超声多普勒)的互补三维(3D)图像。所提出的方法不含标签,利用了血液诱导的波动,并在仅有256个元素的稀疏阵列上实施,并以市售的超声电子功能驱动。我们首先实施3D光声波动成像(PAFI)来对鸡胚胎进行图像,并获得血管形态的全部视频图像。我们同时获得具有可比图像质量的3D超声功率多普勒。然后,我们引入了多光谱光声波动成像(MS-PAFI),并证明它可以提供吸收的光学能量密度的定量测量,并具有完全可见性和增强的对比度,与常规的延迟延迟式延迟式多光谱摄影成像相比。我们最终展示了MS-PAFI之间的协同作用和互补性,该MS-PAFI提供了3D定量氧合(SO 2)成像和3D超声多普勒,该成像提供了有关血流动力学的定量信息。MS-PAFI代表了基于模型的反转的有希望的替代方案,其优势是通过使用直接处理方案解决所有可见性人工制品而没有事先和正则化。
