GPS 接收器集成和向后兼容性 GPS 接收器在任何 AJ 解决方案的有效性中都起着至关重要的作用。GSTAR 提供多种集成选项:• 与任何标准 GPS 接收器兼容的 RF 接口 • 与外部数字接收器的数字多波束接口;此选项用于基于 EGI 的平台 专为增长而设计 • 基于 M 代码和 SAASM 的 EGI 兼容 AEU • 用于波束成形的开放数字接口 • 基于 FPGA 的架构可适应未来威胁 • 与主要政府和行业合作伙伴一起推进 AJ-GPS 经过验证的设计 GSTAR 系列产品的变体已成功针对各种威胁场景进行了测试。我们已经在众多模拟领域证明了我们的设计能够抵御威胁,包括赖特帕特森空军基地、天线波前模拟器和霍洛曼空军基地的飞行测试。
摘要 —由于人工智能的快速发展,传感和通信融合 (ISAC) 网络在即将到来的新型移动通信网络中拥抱了人工智能。本文提出了一种用于 ISAC 网络的 FedFog 网络架构,该架构由终端感知层、边缘基站处理层和云数据层组成。在多基站 (BS) 的背景下,BS 和用户设备之间的切换值得研究。参考协调多 BS 的概念,我们设计了 ISAC 网络中的切换程序。同时,设计了一种用户控制的联邦强化学习方案。然而,由于毫米波段和太赫兹波段等新的未授权频谱带,混合波束成形可以降低硬件费用。设计了一种利用混合波束成形的基于学习的干扰管理。同时,我们考虑使用深度神经网络进行自干扰和相互干扰消除。仿真结果展示了AI驱动的ISAC网络在移动性和干扰管理方面的性能,并进一步证明6G网络的服务得到提升。
哈维尔是未来世界正在成形的地方。这里迅速成为世界上最大、最重要的科学和创新中心之一,是一个由 6,000 人组成的社区,包括科学家、工程师和创新者,他们合作开发许多世界上最先进的技术,并取得将改变全世界生活的突破性成果。校园内设有国家和国际机构,包括科学和技术设施委员会、欧洲航天局、英国公共卫生部和英国太空门户。哈维尔以一系列开创性的创新为基础,从 1947 年欧洲第一座核反应堆、1953 年世界上第一台晶体管计算机到 2007 年的钻石光源同步加速器。哈维尔拥有来自 60 多个国家的杰出人才和世界领先的开放式设施,是跨部门创新的温床。这是一个名副其实的社区,专为生活和工作而设计,具有国际视野和独特的协作文化。业务和专业发展是这里的重中之重,通过开放日、论坛和社交活动积极培养合作。未来发展的宏伟计划包括增加数百万平方英尺的商业和技术空间,以容纳数千名世界上最聪明、最敬业的人才
摘要 —本文提出了一个新术语——波束空间复用,来替代3GPP版本中针对4G TD-LTE的多层波束成形。我们从工程和理论的角度对波束空间复用进行了系统的概述。首先,我们阐明了波束空间复用的基本理论。具体而言,我们从理论分析、信道状态信息获取和工程实施约束方面与天线空间复用进行了全面的比较。然后,我们分别从多层波束成形和大规模波束成形的角度总结了4G TD-LTE和5G新无线电(NR)中波束空间复用的关键技术和3GPP标准化。我们还提供了波束空间复用方案的系统级性能评估和来自当前商用TD-LTE网络和5G现场试验的现场结果。 4G TD-LTE 和 5G 蜂窝网络的实际部署证明了波束空间复用在实现复杂性和实际部署场景的限制内的优越性。最后,讨论了 6G 及以后波束空间复用的未来趋势,包括用于超大规模 MIMO (XL-MIMO) 的大规模波束成形、低地球轨道 (LEO) 卫星通信、数据驱动的智能大规模波束成形以及多目标空间信号处理,即联合通信和感知、定位等。
(DC-GDPAU)是一个直流辉光放电等离子体实验,由艾因夏姆斯大学(埃及)物理系设计、建立和运行。该实验的目的是通过将印刷电路板(PCB)暴露于等离子体来研究和改善它的某些特性。该装置由圆柱形放电室组成,其中固定有可移动的平行圆形铜电极(阴极和阳极)。它们之间的距离为12厘米。该等离子体实验在氩气的低压范围(0.15 - 0.70 Torr)下工作,最大直流电源为200 W。在两个电极之间每厘米处测量和计算了等离子体的帕申曲线和电等离子体参数(电流、伏特、功率、电阻)。此外,使用双朗缪尔探针获得了不同径向距离下的电子温度和离子密度。电子温度(KT e )保持稳定在6.58至10.44 eV范围内;而离子密度(ni )范围为0.91×10 10 cm −3 至1.79×10 10 cm −3 。采用数字光学显微镜(800倍)比较等离子体暴露前后对电路布局成形的影响。实验结果表明,等离子体暴露后电导率增加,铜箔表面的粘附力也有所改善。电导率的显著增加与样品表面的位置以及暴露时间直接相关。这表明所获得的结果对于开发用于不同微电子设备(如航天器上的设备)的PCB制造非常重要。
信号的非平稳性变化且通常与类别相关,这是将脑电图 (EEG) 认知工作负荷估计的常见发现从实验室实验转移到现实场景或其他实验时面临的一大挑战。此外,脑信号反映的实际认知工作负荷是否是估计的主要贡献,还是具有辨别力和与类别相关的肌肉和眼部活动(可能是工作负荷水平变化的次要影响),这通常仍是一个悬而未决的问题。在本研究中,我们研究了一种基于波束成形的适应变化设置的空间滤波新方法。我们将其与无空间滤波和常见空间模式 (CSP) 进行比较。我们在拖船模拟器上使用真实的操纵任务以及听觉 n-back 次要任务作为两种不同的条件来诱导专业拖船船长的工作负荷变化。除了典型的条件内分类外,我们还研究了不同分类方法在 n-back 条件和操纵任务之间转移的能力。结果表明,在具有挑战性的迁移设置中,所提出的方法比其他方法具有明显优势。虽然在两种情况下(22% 和 10%),无滤波平均导致条件内归一化分类损失最低,但我们使用自适应波束形成(30% 和 18%)的方法与 CSP(33% 和 15%)的表现相当。重要的是,在从一种设置转移到另一种设置时,无滤波和 CSP 导致性能接近偶然水平(45% 到 53%),而我们的方法则是唯一能够在所有其他场景(34% 和 35%)中进行分类的方法,与偶然水平有显著差异。场景中信号成分的变化导致需要调整空间滤波才能进行迁移。使用我们的方法,迁移是成功的,因为滤波针对神经成分的提取进行了优化,并且对其头皮模式的额外研究主要揭示了神经起源。有趣的发现是,模式在不同条件之间略有变化。我们得出结论:低归一化损失的方法依赖于眼睛和肌肉活动,这种方法在一定条件下可以成功进行分类,但在分类器转移中会失败,因为眼睛和肌肉的贡献高度特定于条件。
通过传播光子耦合孤立量子系统是量子科学的中心主题 1、2,具有实现分布式容错量子计算 3 – 5 等突破性应用的潜力。到目前为止,光子已被广泛用于实现高保真远程纠缠 6 – 12 和状态转移 13 – 15,方法是用条件反射补偿效率低下,这是一种限制通信速率的概率性策略。与此相反,我们在这里通过实验实现了一个长期存在的确定性直接量子态转移的提议 16。利用高效的、参数控制的微波光子发射和吸收,我们展示了两个孤立超导腔量子存储器之间按需的高保真状态转移和纠缠。传输速率比任一存储器中光子的丢失速率更快,这是复杂网络的基本要求。通过以多光子编码传输状态,我们进一步表明,使用腔体存储器和状态独立传输创造了惊人的机会,可以通过量子误差校正确定性地减轻传输损耗。我们的研究结果为跨网络的确定性量子通信建立了一种引人注目的方法,并将实现超导量子电路的模块化扩展。直接量子态转移是一种快速、确定性的量子通信方案,用于在量子网络中传播光子 16 。在该协议中,发送节点以成形的光子波包形式发射量子态,然后被接收节点吸收。这需要光和物质之间强大的可调耦合,以及在共享通信频率上高效传输光子;到目前为止,由于光子耦合和传输效率低下,光网络中的状态转移具有高度概率性 8 。相比之下,超导微波电路可以将低损耗与强耦合相结合。该平台非常适合实现按需状态转移,从而以模块化方式扩展量子设备。为此,超导微波存储器和传播模式已成功对接,独立实现受控光子发射 17 – 20 和吸收 21 – 23。然而,由于高效、频率匹配的光子传输需求带来的困难,远距离确定性量子通信的目标至今仍未实现。