伏消纳的主要手段,在电力网中合理配置能源储存 的位置和容量,可以改变负荷和风力发电的时空特 性,进而改变电网的传输性能,解决输电线路阻塞 和过负荷的问题。文献 [7] 考虑储能和可再生能源 之间的互补性,以综合成本最低为目标构建输储规 划模型;文献 [8] 引入了一种自适应最小 - 最大 - 最小 成本模型,以找到新线路和储能的鲁棒最佳扩建规 划;文献 [9] 则从储能带来的效益出发,将商业储能 的选址、定容问题和线路扩展规划集成起来,构建 输储规划模型;文献 [10] 针对输电线路和储能系统 的综合规划,提出了一种连续时间混合随机 / 鲁棒优 化方法;文献 [11] 针对输电工程的扩建落后于风力 装机容量的发展,提出了一种考虑低压侧直供潜力 的协调规划方法;文献 [12] 总结了能源互联网的基 本概念和特点,对其基本结构框架进行了详细分 析,通过高通滤波的控制策略来平抑新能源功率的 波动;文献 [13] 提出依据风电预测误差,利用储能的 快速调节能力,提出考虑预测误差的储能控制策 略,从而进行平抑风电功率波动;文献 [14] 研究了多 区域电力系统储能优化配置问题,采用迭代算法将 原问题进行分解为多个子系统储能配置问题;文献 [15] 综合考虑多种经济因素,为追求最低经济成本, 建立一种分阶段的输储规划模型。需要指出的是, 输电网络约束的引入增加了输储规划模型的求解 难度,并且现有的输储协同规划研究主要集中于储 能和线路的扩建,考虑风光互补的输储联合规划的 研究很少。 面对大规模风光并网的输电网规划问题,本文 首先综合考虑风光互补特性和储能的运行特性,进 行输电线路规划,使储能成本、年弃风弃光成本和 输电线路成本最小化,其次提出 3 个评价指标来评
委员会需要增强的替代连接美国成本模型(A-CAM)载体,以在2024年1月1日之前实施运营的网络安全和供应链风险管理计划,即增强的A-CAM支持术语的开始,以“强调网络安全性和供应链风险管理的重要性,而现代宽带网络中的供应链风险管理则与整个联邦政府一致。。。” 1增强的A-CAM承运人必须在2024年1月2日或根据《减少文书工作法》批准后的30天内向通用服务行政公司(USAC)提交此类计划2在2024年1月11日,有线竞赛局在联邦公报上发布了生效的日期通知,宣布管理和预算办公室已批准了相关信息收集。 3因此,承运人必须在晚上11:59之前认证并提交其网络安全和供应链风险管理计划。美国东部时间于2024年2月12日星期一。2在2024年1月11日,有线竞赛局在联邦公报上发布了生效的日期通知,宣布管理和预算办公室已批准了相关信息收集。3因此,承运人必须在晚上11:59之前认证并提交其网络安全和供应链风险管理计划。美国东部时间于2024年2月12日星期一。
复杂项目的系统架构、技术投资和任务规划方面的战略决策必须平衡成本、风险和性能——可能要经过多年的开发和运营。成本模型用于将项目和系统元素转化为财务考虑。通常会分析不同的任务选项以确定它们之间的相对成本并为开发决策提供参考。成本估算通常预测未来几年的情况,参数通常不确定。因此,进行敏感性分析并检查结果如何响应基本假设的变化非常重要。特定参数的成本敏感性可用于说明项目风险——例如,通过揭示特定参数的微小变化可能导致成本大幅增加。同样,这些分析可以阐明在正在开发的特定系统之外开发能力可以节省成本的领域。本文基于 Jones 使用高级任务成本模型的先前工作,对空间站、月球基地、火星过境栖息地和火星基地的开环和闭环生命支持系统的成本进行了案例研究的敏感性分析。考察了针对每种不同情况估算的成本响应,重点关注难度变化(主观模型输入)的影响。讨论了结果的含义以及在生命周期成本分析中使用敏感性分析的一般观察结果。
摘要:随着全球能源需求的不断增长和环境污染问题的日益严重,寻找清洁、可持续的替代能源尤为迫切。本文详细探讨了海上风能、波浪能作为可再生能源的可能性,并讨论了海上风能、波浪能联合发电的策略和技术。首先对海上风能、波浪能资源进行评估,然后简要讨论其分布情况。本文介绍了风能、波浪能联合发电技术的研究,包括风能、波浪能互补发电平台的基础技术、集成可行性、共享阵列成本模型和发展现状。技术研究部分详细分析了控制系统设计、风能、波浪能互补供电装置、固定式风力发电机基本波浪能装置以及新型风能、波浪能联合发电平台的创建。最后,强调了技术创新、优化调度和系统集成的意义,展望了风能、波浪能联合发电未来的发展道路,提出了具体的研究方向,并指出了产业化和市场化的必然趋势。风浪联合发电技术虽然面临成熟度、稳定性以及研发和运维成本高等挑战,但其在推动能源结构转型、应对气候变化等方面发挥着重要作用。
SSAE 已经开发并发布了盐水储存地质分析评估 (GEESS) 地理数据库 - 这是一个公开的地理数据库,它描述了盐水层的独特地质参数,这些参数对于美国本土 48 个州的碳储存开发至关重要。高空间分辨率数据集(高达 5 公里网格间距)涵盖了从加利福尼亚到东海岸的 FECM/NETL CO 2 盐水储存成本模型 (CO2_S_COM) 中的 57 个潜在盐水储存层。它来自公开来源。以地层为基础捕获的数据包括深度、厚度、岩性、压力、温度、沉积环境、盐度、孔隙度、渗透率、结构状态和破裂压力。该数据集包括 CO 2 羽流大小的空间离散估计值和 CO 2 储存第一年盈亏平衡价格的估计值(有关风河盆地 Tensleep 地层的图表见下文)。鉴于该数据集的性质,它可以促进更准确的碳储存相关工作,例如在项目开发早期阶段进行储存资源潜力评估或二氧化碳注入成本估算。这个新发布的数据库由 SSAE 研究人员 Austin Mathews*、Jeffrey Eppink*、Dave Morgan 和 Tim Grant 开发,可在此处下载。2023 年 FECM / NETL 碳管理研究项目审查会议上展示的数据库概述可在此处获得。
这项研究估计了从扩展日间市场(EDAM)创建的客户成本节省的成本,以告知研究参与者的决策过程:北加州北加州的平衡机构(BANC),爱达荷州电力公司,洛杉矶水与电力部(LADWP),Pacificorp(Paceforp)(Paceforp)(PAC)和Sacramento Municipal Itility ittility distility(Scarmento Municipal Itility ititality intility of。该研究是与参与者合作设计的,以模拟2032年的EDAM,作为代表EDAM运营的第一个十年的代表年。它为合理的EDAM足迹模拟了EDAM市场设计的具体细节,而不是基于涵盖整个西部西部电力协调委员会(WECC)地区的通用批发市场设计的EDAM近似。我们使用节点生产成本模型,该模型可为所有发电机和WECC中的总线产生位置价格。该模型的节点结构捕获了传输限制,包括平衡权威区域内的内部约束(BAAS),以产生系统调度结果,与西方能源不平衡市场(WEIM)的未来市场成果紧密相吻合以及EDAM的未来结果。以这种方式,研究参与者可以更大的保证,结果可以合理地近似Nyam的实际功能,并更有信心依靠研究结果来进行决策过程。基于模拟的市场条件,估计的收益可能是保守的。
新墨西哥州公共监管委员会 (NMPRC) 专员 2023 年至今 • 领导制定委员会首个电力配电系统可靠性规则的努力 • 代表新墨西哥州在区域委员会为西部资源充足计划提供咨询 • 参与国家级监管委员会和研讨会,例如 NARUC(全国监管公用事业委员会委员协会)天然气委员会和天然气工作组 • 始终以准备和专业的态度处理所有 NMPRC 事务,努力为公众利益做出公正、公正的决定 桑迪亚国家实验室首席电网分析师 电网现代化小组 2021-2022 • 对 PNM 系统的太阳能和风能预测误差以及补偿此类误差所需的调节储备量进行研究 • 对气候变化如何影响 PNM 的太阳能和风能发电进行分析 Cimarron Power LLC 董事总经理 2018-2021 • 专注于岛屿 LNG 再气化终端开发的公司的创始人 •组建专业人员网络,协助项目开发的各个方面 桑迪亚国家实验室主要成员技术人员 能源存储和传输分析组 2011-2018 • 确定并获得了最先进的电力系统生产成本模型,为桑迪亚带来了新的能力 • 使用模型对电网进行深入研究,重点评估能源存储和可再生能源的整合
本信重点关注估计纯态 | ψ ⟩ 的多个可观测量的期望值的任务。在状态准备成本为主导因素的环境中,我们主要量化 Oracle 模型中所需的资源,在该模型中我们计算对状态准备幺正及其逆的调用次数。为了为该成本模型和一般任务提供具体的动机,考虑以下示例,其中我们感兴趣的状态是 Jordan-Wigner 变换下某些二阶量子化电子结构哈密顿量的未知基态。在这种情况下,状态准备步骤预计在某些假设下是可处理的,但相对昂贵,即使使用现代方法(例如,通过应用参考文献 1、2 的基态准备算法结合最先进的哈密顿量块编码技术 [ 3、4 ])。同时,感兴趣的可观测量可能特别简单(例如,费米子约化密度矩阵的元素)。在补充信息第 VI 部分中,我们讨论了状态准备成本不一定占主导地位的情况,以及在我们的方法背景下可能存在的权衡。令 U ψ 表示从 | 0 ⟩ 状态准备 | ψ ⟩ 的幺正态,令 { O j } 为 M 个 Hermitian 算子的集合。为了简化与现有方法的比较,我们在本节中做出额外假设,即 O j 也是幺正态,尽管可以使用基于块编码的技术放宽这一要求 [ 5 ]。与正文一样,我们的目标是尽量减少对 U ψ 和 U † ψ 的调用次数,以获得 M 个期望值 ⟨ ψ | O j | ψ ⟩ 的估计 eoj,使得
城市地区的迅速扩张导致了由当代文明,包括商业部门和人类企业的多余的市政固体废物(MSW)。kerbside Waste是一种MSW的类型,在其第一个生命周期结束时具有回收和再利用的潜力,但通常仅限于线性周期。这项研究旨在评估处理曲线浪费的不同分离和回收方法的生命周期成本。已经创建并应用了一个新的生命周期成本模型,该模型是从循环经济的价值保留过程(VRP)模型中汲取的,并应用于评估Kerbside Glass的连续回收。该研究研究了两种关键的分离技术,Kerbside回收混合箱回收(KRMB)Kerbside玻璃回收单独的垃圾箱(KGRSB),并分析了它们对回收过程生命周期成本的影响。此外,该研究还探讨了两种回收和下囊的方法:闭环回收与玻璃容器的回收以及开环回收有关,涉及在沥青中使用再生玻璃。结果显示,每年使用废物作为功能单元时,与KGRSB模型相比,KRMB模型由于其产量较低而产生的成本较低。然而,当对玻璃容器和沥青的1吨生产进行评估时,KGRSB方法与KRMB方法相比,降低了40%至50%的成本性能,其成本性能较高。与闭环回收法相比,开环回收法(沥青)由于21年内的生产量较大而产生的成本更高。
锂离子细胞由于多种细胞内衰老效应而导致降解,这可以显着影响电池能量储能系统(BESS)的经济性。由于降解率取决于外部应力因素,例如电荷,电荷/放电率和周期深度,因此可以通过操作策略直接影响它。在此贡献中,我们提出了一个模型预测控制(MPC)框架,用于设计老化的意识操作策略。通过模拟数字双胞胎上的整个BESS寿命,可以基准测试不同的老化意识优化模型,并且可以确定老化成本的最佳价值。在案例研究中,研究了通过套利交易在EPEX现场盘中电力市场上通过套利交易的应用。为此,提出了用于日历的线性化模型和磷酸锂细胞的环状容量损失。结果表明,与基于电池系统的成本选择老化成本相比,使用MPC框架来确定最佳的老化成本可以显着提高BES的寿命盈利能力。此外,与基于能量吞吐量的基于能量吞吐量的老化成本模型相比,使用线性化日历降解模型时,能量套利的生命周期利润可以增加24.9%,使用线性化日历和环状降解模型时,可以增加24.9%。通过检查2019年至2022年的价格数据,该案例研究表明,批发电力市场的价格和价格波动的最新上涨导致可实现的终身利润大幅增加。