摘要 CRISPR这个术语在英文中的缩写是指Clustered Regularly Interspaced Short Palindromic Repeats,即成群的、有规律地分散的短回文重复序列,由于其在基因组中的特点,天然地属于细菌和古菌的防御系统。这已在生物技术上适用于编辑真核细胞(包括人类细胞)的 DNA。 CRISPR-Cas基因编辑系统通常由两部分组成:核酸酶蛋白(Cas)和向导RNA(sgRNA)。该复合物的简单性使其成为一种可重新编程的分子工具,能够靶向和编辑已知基因组中的任何位点。其主要重点是单基因遗传疾病和癌症的治疗。然而,CRISPR 技术除了作为基因编辑器之外,还用于表观遗传编辑、调控基因表达和作为分子诊断方法。本文旨在回顾 CRISPR-Cas 分子工具的应用,特别是在生物医学领域的应用、可能的治疗和诊断,以及迄今为止使用 CRISPR/Cas 基因治疗的临床研究中最相关的进展。
近年来,自主系统迅速扩张,催生出了许多前所未有的新服务和业务。然而,随之而来的是计算上极具挑战性的任务和安全关键应用场景。当今先进的信息物理系统和系统的系统具有巨大的复杂性和异质性,而使用前卫计算架构在系统中采用基于人工智能的自主性,则使这种复杂性和异质性成倍增加。诸如成群的自主机器人车辆之类的设置已经出现,需要采用新颖的智能方法来确保可靠性,而可靠性通常是新产品或新技术进入市场的关键因素。这一成功得益于物联网研究领域正在开发的连接解决方案,该领域也在朝着增强联网智能事物的自主性的方向发展 [1]。人们对可靠性的期望非常广泛,自主系统也多种多样。后者由以下许多杀手级应用驱动: 就资金和最近投入的研究工作而言,汽车领域的自动驾驶汽车是主要应用,包括具有 3 至 5 级自动驾驶 (AD) 的汽车; 具有不同自主程度的飞机,例如采用可靠性关键型“电传操纵”系统; 无人驾驶飞行器(UAV),通常称为无人机,包括固定翼和旋翼(四轴飞行器),
人工智能 (AI) 一直在寻求利用机器来解决人类无法完成的任务(例如大数据分析)。基于竞争性工程成果、海量数据、快速计算和自主性的前景,AI 领域正在蓬勃发展。一个突出的例子是从大挑战中扩展而来的自动驾驶汽车的巨大努力(Seetharaman 等人 2006 年;Urmson 等人 2009 年)。当前的兴趣包括成群的自主协调无人机 (UAV;Shishika 和 Paley 2017 年;Cruise 等人 2018 年)。要实现这样的机器人系统需要通过自主性进行多模式感知和行动。四种类型的自主性(Hintze 2016)包括传统的基于规则的 AI 方法和自我意识 AI(表 1)。具有自我意识的自动驾驶汽车与人类互动(Amershi 等人,2014 年),建立概念知识(Bredeweg 等人,2013 年),并使用情境(Adomavicius 等人,2011 年)。Scerri 等人(2015 年)的一个突出例子是,他们利用移动显示器、本体和多模态融合,通过整合人类语义(例如社交网络)、物理传感器(例如全球定位系统)和模型(例如天气),开发了一种情境感知的情境分析设备。
在未来的一次涉及几个主要靶场和试验设施基地 (MRTFB) 的测试日中,在 O Dark Thirty,这款造型优美的自主高超音速防空导弹从发射器中冲出,划破夜空。几秒钟之内,该武器就从空中、陆地、海上和太空中的机外传感器获取了目标群的信息;所有这些都通过卫星和地面网络在多域交战中进行通信。该网络向随时准备交战的其他武器系统提供信息,而来自靶场仪表传感器的连续信息则表明交战是成功还是失败。这种系统之体系主题确保了对任何对手采取优势和果断的行动。突然间,成群的目标做出猛烈但预先编程好的机动来对抗无数的武器系统交战,从而促使所有交战的系统采取相关行动。射程控制系统自动合并所有射程传感器数据,以便对所有参与者的轨迹进行最佳估计,这些数据来自雷达、GPS、光学、遥测和其他以人工智能、机器语言和特殊数据融合算法驱动的遥感配置运行的系统。结果数据对于测试范围客户的决策过程和模型和模拟的验证以及对单个武器系统的“记录”评估和综合多领域整体评估至关重要。在涉及的 MRTFB 中,这个复杂的系统
抽象的一个主要风险方面之一是隐形眼镜中微生物污染的存在是低卫生和符合镜头官员的依从性,镜头官员会引起眼睛的感染。该研究的目的是在浸入隐形眼镜清洁液中鉴定微生物。以下类型的研究是使用随机抽样进行分析的描述性研究。使用多达10个样品后,采用隐形眼镜的样本。研究的阶段包括对隐形眼镜清洁液的采样,与MSA和MCA培养基进行细菌菌落分离,在媒体上纯化培养物,以便在MCA和MSA培养基中迭代细菌菌落的斜体和微观观察,继续进行生物化学测试和酶测试。结果表明细菌菌落为茎,革兰氏阴性,红色扩散和革兰氏阳性细菌,圆形或球菌,紫色成群。生化测试描述了乳糖( - ),葡萄糖(+),麦芽糖( - ),甘露醇( - ),H 2 S(+),蔗糖( - ),MR(+),Indol(+),柠檬酸盐(+),VP(+),VP( - ),导致了酸性雌激素的生物。酶试验结果包括过氧化氢酶在存在气泡的存在下获得的阳性结果,表明细菌是金黄色葡萄球菌。下一个建议将革兰氏阳性细菌通过凝结酶检测确定更具体,以确定金黄色葡萄球菌细菌与其他葡萄球菌种类的分化。关键字:清洁液,隐形眼镜,微生物
• Piasky (crovalimab-akkz) • 依库珠单抗药物 (Soliris、Bkemv、Epysqli) • Ultomiris (ravulizumab-cwvz) 依库珠单抗、ravulizumab 和 crovalimab 是单克隆抗体,可与补体蛋白 C5 结合并抑制其酶促裂解,从而防止形成终末补体复合物。Soliris 和 Ultomiris 获批用于治疗阵发性睡眠性血红蛋白尿 (PNH)、非典型溶血性尿毒症综合征 (aHUS)、视神经脊髓炎谱系障碍 (NMOSD) 和全身性重症肌无力 (gMG)。Piasky (crovalimab-akkz) 仅获批用于治疗 PNH。Epysqli 是参考产品 Soliris 的生物仿制药。Bkemv 被指定为参考产品 Soliris 的可互换生物仿制药。这两种药物均已获批用于治疗阵发性睡眠性血红蛋白尿 (PNH) 和非典型溶血性尿毒症综合征 (aHUS)。阵发性睡眠性血红蛋白尿 (PNH):PNH 是一种罕见的获得性造血干细胞疾病,与多种非特异性临床特征有关,包括但不限于溶血性贫血、疲劳、平滑肌张力障碍和非典型静脉血栓形成。治疗方案有限,但可能包括使用治疗性抗凝、异基因造血细胞移植和/或补体抑制剂,具体取决于症状严重程度、溶血程度和血栓形成史。抗补体疗法用于减少血管内溶血、减少或消除输血需求并降低血栓形成风险。如果患者停止接受依库珠单抗、拉维珠单抗或克罗伐单抗治疗,且未改用其他 PNH 治疗,则应在停止治疗后分别密切监测患者至少 8 周、16 周或 20 周,以检测溶血情况。非典型溶血性尿毒症综合征 (aHUS):aHUS 是一种罕见的血液疾病,其特征是微血管病性溶血性贫血、血小板减少和急性肾损伤。治疗方案有限,包括血浆疗法(血浆置换或新鲜冷冻血浆输注)、肾移植或补体抑制剂。依库珠单抗和拉维珠单抗对 aHUS 的疗效基于它们抑制补体介导的血栓性微血管病 (TMA) 并从而改善肾功能的能力。如果停药,停药后必须密切监测(例如:从停药的那一周开始定期进行实验室监测,包括全血细胞计数、外周涂片、乳酸脱氢酶、肾功能和尿蛋白,然后每周监测 4 周,每 2 周监测 1 个月,然后每月监测 3 个月,由治疗医生决定)。全身性重症肌无力 (gMG):gMG 是一种自身免疫性神经肌肉疾病,其特征是波动性运动无力,导致呼吸困难、吞咽困难、复视、构音障碍和眼睑下垂。全身性重症肌无力通常由针对神经肌肉接头的 IgG 自身抗体介导。治疗策略包括对症治疗(使用抗胆碱酯酶药物,如吡啶斯的明)、使用类固醇或其他免疫抑制药物(如硫唑嘌呤、环孢菌素或甲氨蝶呤)的慢性免疫治疗、快速免疫治疗(使用血浆置换或静脉注射免疫球蛋白)和/或手术治疗。依库珠单抗和雷维珠单抗是阻断神经肌肉接头处乙酰胆碱受体抗体引发的补体激活的免疫疗法。较新的疗法,包括 Vyvgart、Vyvgart Hytrulo 和 Rytiggo,通过与新生儿 Fc 受体 (FcRn) 结合来减少自身抗体。美国重症肌无力基金会 (MGFA) 国际共识指南在 FcRn 抑制剂和 Ultomiris 获批之前发布,建议对在充分试用吡啶斯的明后仍未达到治疗目标的患者使用免疫抑制药物和/或皮质类固醇。指南指出,在其他免疫疗法试验失败后,可考虑使用 Soliris 治疗严重、难治性 MG。视神经脊髓炎谱系障碍 (NMOSD):NMOSD 是一种严重的中枢神经系统自身免疫性疾病,由免疫介导的脱髓鞘和轴突损伤引起,主要针对视神经和脊髓。这种损伤是由抗水通道蛋白 4 (AQP4) 抗体引发的,这些抗体是 NMOSD 的诊断标准之一。该疾病的特征是视神经炎或横贯性脊髓炎发作成群,发作间期部分恢复。反复发作可能导致进行性视力障碍和瘫痪。治疗可能包括非说明书规定的免疫抑制疗法,包括利妥昔单抗、这种损伤是由抗水通道蛋白 4 (AQP4) 抗体引发的,而这些抗体在 NMOSD 的诊断标准中被考虑在内。该疾病的特征是视神经炎或横贯性脊髓炎发作成群,发作间期部分恢复。反复发作可能导致视力逐渐受损和瘫痪。治疗可能包括标签外免疫抑制疗法,包括利妥昔单抗、这种损伤是由抗水通道蛋白 4 (AQP4) 抗体引发的,而这些抗体在 NMOSD 的诊断标准中被考虑在内。该疾病的特征是视神经炎或横贯性脊髓炎发作成群,发作间期部分恢复。反复发作可能导致视力逐渐受损和瘫痪。治疗可能包括标签外免疫抑制疗法,包括利妥昔单抗、
饮酒障碍(AUD)是一个重大的全球健康问题。尽管男性的发生率较高,但女性的AUD患病率和与酒精相关的负面结果正在上升。人类中的孤独感与饮酒的增加有关,传统的啮齿动物饮酒模型涉及单一住房,对研究社会富集提出了挑战。我们开发了Liq parti(带有多动物RFID跟踪集成的LICK实例量化器),这是一种开放式工具,可在集体式的环境中检查家居笼子连续连续的访问两瓶选择饮酒行为,研究性别和社会隔离对C57BL/6J小鼠中乙醇消耗的影响以及性别隔离对乙醇消耗的影响。liq parti,基于我们先前开发的单层Liq HD系统,可以使用基于电容的传感器和RFID技术准确跟踪饮酒行为。组成群的雌性小鼠比男性表现出更高的乙醇偏好,而男性则显示出与笼子变化相关的乙醇偏好的独特波动模式,这表明潜在的应力或新颖的反应。慢性乙醇摄入量明显改变了男性和雌性小鼠之间的回合微观结构,突出了性别和社会环境对饮酒行为的影响。liq HD系统的社会隔离在性别中放大了液体摄入量和乙醇偏好,并伴随着性别微观结构的性别和流体依赖性变化。然而,这些影响在重新定位后在很大程度上扭转了,表明这些行为对社会环境的可塑性。利用一种新型的集体房屋笼式莱克计设备,我们的发现说明了C57BL/6J小鼠自愿性饮酒行为中性别和住房条件的关键相互作用,从而促进了对AUD病因的潜在贡献的细微见解。
能源部促进包容性和公平研究(PIER)计划什么是码头计划?从2023财年开始,所有能源部科学资金机会公告(FOAS)要求申请人包括促进包容性和公平研究(PIER)计划作为其提案叙述的附录。Pier计划应描述申请人将纳入的活动和策略,以促进其研究项目中的多样性,公平,包容性和可访问性。Pier计划将作为优异审查过程的一部分进行评估,并将用于为资金决定提供信息。码头计划中应该包括什么?码头计划作为该提案的附录包括在内,并限于3页,并带有1英寸边缘,带有11分的字体,除非招标另有说明。它不计入主要提案叙述的整体页面计数。doe并未提供有关如何组织码头计划的规定性指示,而是2023财年SC招标(SC-FOA-0002844)给出了以下描述Pier Plan应该包括的内容:“所有应用程序都必须提供促进包容性和公平的研究(PIER)计划作为研究建议叙事的附录。PIER计划应描述申请人的活动和策略,以促进公平和包容性,以作为在提议机构和任何相关研究小组的背景下推进研究项目中科学卓越的内在因素。码头的复杂性和细节预计随着研究团队的规模和要支持的人员人数而增加。”计划可能包括但不限于:您的机构的策略(以及合作的机构,如果适用的(如果适用)),以增强招募本科生,研究生和早期研究人员(博士后研究人员和其他研究人员),包括来自不同背景和成群的个人,历史和团体在研究社区中占有不足的人;创造和维持积极,包容,安全和专业的研究和培训环境的策略,从而促进了所有研究人员的归属感;和/或培训,指导和专业发展机会。计划可以纳入或建立项目关键人员或申请机构的现有多样性,公平,可及性和包容性工作,但不应是对标准机构政策或广泛原则的重新陈述。某些招标可能包括针对根据计划活动的范围和目标量身定制的码头计划的其他指导语言。同样,指导审阅者问题可能包括与相关程序活动范围和历史有关的其他问题。如何审查码头计划?将在同行审查过程中评估码头计划。指导审稿人的问题有关促进包容性和公平研究计划的标准,质量和功效,包括以下内容:
主席罗杰斯(Rogers),排名成员史密斯(Smith)和HASC成员:介绍和背景感谢您主持此次收购的现场听证会。您所做的立法工作至关重要,感谢您的考虑和迅速的行动。感谢您的服务。我的名字叫布兰登·滕。我是Shield AI的联合创始人兼总裁,这是一家九岁的,数十亿美元的国防技术公司,我于2015年与兄弟创立。我是一名工程师,也是前海豹突击队和地表战官员,分别部署到太平洋和阿拉伯湾,并两次到达阿富汗。Shield AI的使命是通过人工智能系统保护服务成员和平民。To achieve this mission, we are building the world's best AI pilot, which is self-driving autonomy technology for aircraft.该技术使无人机可以执行无GPS,通信或远程飞行员的任务。It also enables the concept of swarming.AI飞行员启用Edge自主权至关重要,因为俄罗斯,中国和伊朗正在障碍GPS和通讯链接,以阻止我们的遗留无人机和依靠GPS或通讯的武器,并已将表面扩散到空中导弹系统以阻止我们的载人战斗机。空气优势 - 美国最重要的传统威慑力量 - 已被消除。我们抵消这是通过使用AI飞行员的一种方式。AI飞行员使成群的无人机能够一起工作,将军事权力与人力脱钩。很快,一个人将能够在战场上有效地指挥数千架无人机。预算为250亿美元的对手军队有效地采用了较低的成本无人机和自治权,将能够在没有无人机和自主权的情况下淘汰具有8000亿美元预算的军队。以同样的方式,海军航空改变了海军力量结构,从战舰造型到载体罢工团体,自主权和低成本无人机将改变现有的军事力量结构。Shield AI在2020年赢得了DARPA Alpha Dogfight,击败了所有其他AIS和人类飞行员,并且自2022年以来一直自动飞行F-16。We have more flight hours than any company in the world flying jet aircraft autonomously.The Secretary of the Air Force flew in one of our AI-piloted F-16 flights in May.我们还建造和制造了一个试验,垂直起飞的发射和陆地无人机,即MQ-35 V-bat,其任务与4000万美元和1亿美元的飞机相同,而成本的一小部分。V-bat是美国
Infrascanner — 白皮书 手持式脑血肿检测仪 执行摘要 仅在美国,每年约有 287 万人遭受创伤性脑损伤 (TBI),导致 253 万人次就诊、288,000 人次住院和 56,800 人次死亡。1 这一数字自 2006 年以来增长了 53%,这可能是因为人们越来越意识到延迟治疗脑震荡和其他头部损伤的危险。TBI 是 15 至 24 岁男性的主要公共卫生问题,他们占儿童和青少年头部创伤患者的三分之二。此外,TBI 是老年人(75 岁及以上)的严重问题,无论男女。全球每年有超过 2700 万例 TBI 新发病例,年龄标准化发病率为每 100,000 人口 369 例2。快速分类、诊断和治疗对于最大限度地减少更严重 TBI 病例的不良后果至关重要。由于许多 TBI 病例成群出现,并且是个体受害者复杂而广泛的创伤的一部分(源于车祸、战区爆炸等),现场医务人员面临着巨大的挑战。特别是对于中度至重度 TBI 患者,在创伤事件发生后的第一个小时内(“黄金”小时)做出诊断至关重要 3 。InfraScan, Inc. 开发了 Infrascanner,可快速评估可能有颅内出血的头部创伤患者。该技术便携且无创,可重复监测而无需担心辐射剂量。海军研究办公室 (ONR) 和美国海军陆战队 (USMC) 赞助了 Infrascanner 的开发。海军陆战队已确定需要采购一种手持式、非侵入性、基于近红外的诊断设备来检测受伤部位的脑血肿。红外扫描仪是授权医疗津贴清单 (AMAL) 635、营级急救站 (BAS) 的现代化升级版,美国海军陆战队野战部队的医疗部门将其用作早期发现颅内血肿的实用解决方案。每个 BAS 将配备两台红外扫描仪和一批一次性光纤防护罩。初始部署数量约为 200 台红外扫描仪和 20,000 个一次性光纤防护罩,每台设备 100 个。脑损伤概述 TBI 是两种后天性脑损伤之一,可由闭合性头部损伤(头部突然猛烈撞击物体但颅骨保持完整)或穿透性头部损伤引起;另一种后天性脑损伤是非创伤性脑损伤(如中风、脑膜炎)。TBI 是一种高度个性化的损伤,其严重程度取决于损伤性质、力量强度、受影响的大脑区域以及患者之间的身体和遗传差异。 TBI 造成的损伤可以是局部性的(局灶性的),局限于大脑的某个区域,或弥漫性(通常是脑震荡),涉及大脑的多个区域。局灶性脑损伤的类型包括脑组织挫伤(挫伤)和颅骨内血管破裂,从而导致大量出血(颅内出血或血肿)。出血可能
