摘要。Survivin 在多种癌症中过表达,与治疗耐药性和预后相关。微小 RNA (miRNA) 直接调控多个靶基因,是多种癌症的潜在治疗剂。本研究评估了 miR-218 在骨肉瘤中的多个基因靶点,包括 survivin,并比较了 miR-218 与抗 survivin 药物 YM155 的抗肿瘤作用。研究评估了骨肉瘤和成骨细胞系中 miR-218 和 survivin 的表达水平,以及用 miR-218 或 YM155 治疗后细胞的增殖、迁移和侵袭能力。使用荧光激活细胞分选分析评估细胞死亡形式,以检查侵袭能力相关基因的表达。将骨肉瘤细胞系皮下注射到免疫缺陷小鼠体内;然后用 miR-218 或 YM155 治疗小鼠以评估这些药物的抗肿瘤作用。结果显示,与正常成骨细胞相比,骨肉瘤细胞系中 miR-218 下调,而 survivin 过表达。过表达 miR-218(miR-218 组)或施用 YM155(YM155 组)后 survivin 表达受到抑制,导致骨肉瘤细胞凋亡和增殖受到抑制。miR-218 组的侵袭和迁移能力受到抑制,但在 YM155 组没有受到抑制。在动物模型中,miR-218 和 YM155 组均显示肿瘤体积缩小,survivin 表达降低。
断裂愈合是一个复杂的事件,涉及各种不同过程的协调,包括膜内和内侧的骨形成。面对骨折骨不连或延迟的工会时,很少有组织工程结构可以实现预期的结果。主要原因是他们无法概括天然组织的细胞形态,生物学和机械功能。十年前,创造了开发工程一词是指将发展过程用作设计和开发工程的活植入物的蓝图。不同的细胞来源已用作发育工程中的种子细胞。其中,肥厚的软骨细胞吸引了全球关注。肥厚的软骨细胞是生长板软骨细胞的末端状态,导致退化成熟。肥厚的软骨细胞通过调节细胞基质降解,血管形成,破骨细胞募集和成骨细胞分化来介导串扰。此外,肥厚的软骨细胞可以将分化成骨基构和成熟的成骨细胞,并直接促进编织的骨形成。总而言之,阐明肥厚软骨细胞的作用将有助于了解骨折愈合的生理机制,发展的发育工程新型治疗模式的研究和发展,并进一步促进断裂愈合。
神经嵴衍生细胞(NCDC)在胎儿期以神经嵴细胞的形式存在,并分化为腭细胞,也存在于成人腭组织中,但其作用尚不明确。本研究用EGFP标记来自P0-Cre/CAG-CAT-EGFP(P0-EGFP)双转基因小鼠的NCDC,然后分析其在腭黏膜伤口愈合中的作用。作为腭伤口愈合模型,切除P0-EGFP小鼠左侧腭黏膜,在愈合区域检测干细胞标志物和角质形成细胞标志物。从正常腭黏膜提取NCDC,用干细胞培养基预培养14 d,然后分化为角质形成细胞或成骨细胞以分析多能性。伤口愈合过程从第二天的边缘粘膜再生开始,第 28 天整个伤口区域被含有 EGFP 阳性细胞 (NCDC) 的再生粘膜覆盖。EGFP 阳性细胞占愈合口腔粘膜中约 60% 的细胞,其中 65% 表达干细胞标志物 (Sca-1 + 、PDGFR α + ),30% 表达角质形成细胞标志物 (CK13 + )。在培养的腭粘膜细胞测试中,大约 70% 的 EGFP 阳性细胞表达干细胞标志物 (Sca-1 + 、PDGFR α + )。此外,在分化诱导条件下,培养的 EGFP 阳性细胞被成功诱导分化为角质形成细胞和成骨细胞。我们得出结论,NCDC 作为干细胞存在于成人腭组织中,并有可能在伤口愈合过程中分化为各种细胞类型。
骨转移的最常见部位包括脊柱,头骨,肋骨,骨盆和胳膊和腿上的长骨头。对于患有雌激素受体阳性转移性乳腺癌的人来说,骨是最常见的转移部位。骨骼如何在我们的体内起作用?骨骼为我们的身体行走或站立提供了支撑。它们由组织,钙和骨细胞组成。骨头总是在我们体内形成和分解,以保持骨骼坚固并释放到血液中。乳腺癌细胞如何影响骨骼?患有骨转移的人可能具有骨化和成骨细胞区域。
干细胞分化对生物医学设备设计和组织工程具有重要意义。最近,已经发现固有的材料特性,包括表面化学,刚度和地形,会影响干细胞的命运。其中,表面形貌是与材料接触的干细胞的关键调节剂。理想骨组织工程的最重要方面是控制具有完全分化的成骨细胞的骨外基质的组织。在这里,我们发现激光粉末床融合(PBF-LB)受骨骼微观结构的启发,该骨骼的启发,这诱导人间充质干细胞(HMSC)分化为成骨谱系,而没有任何不同的补充。通过PBF-LB制造了周期性的凹槽结构,该结构通过沿凹槽的细胞骨架张力促进了细胞伸长。这导致通过Runx2表达的成骨的上调。对齐的HMSC成功地分化为成骨细胞,并进一步组织了骨模拟于骨骼的细胞外基质微结构。我们的结果表明,金属添加剂制造技术在将干细胞命运控制到成骨谱系和骨模拟微结构组织的构造方面具有很大的优势。我们在标准细胞培养条件下对材料诱导的干细胞分化的发现开发了新的途径,以开发医疗设备,以实现由调节的干细胞功能介导的所需组织再生。
由于可预测的组装成复杂的形态和易于功能化,因此已经提出了基于DNA的生物材料,用于组织工程方法。用于骨组织再生,结合Ca 2+并促进沿DNA骨架的羟基磷灰石(HAP)生长的能力结合了其降解和释放细胞外磷酸盐(已知的造成骨质分化的启动子),使DNA基于DNA的生物材料与其他当前使用的材料一样。然而,它们用作可生物降解的脚手架进行骨骼修复仍然很少。在这里,我们描述了DNA水凝胶的设计和合成,由水中膨胀的DNA组成的凝胶,它们与成骨细胞系MC3T3-E1和小鼠钙质成成层分细胞的体外相互作用,以及它们在大鼠钙钙伤口中新骨形成的运动。我们发现DNA水凝胶可以在室温下容易合成,并且它们在体外促进HAP生长,其特征是傅里叶变换红外光谱,X射线衍射,扫描电子显微镜,原子力显微镜显微镜,原子力显微镜,和透射电子显微镜。成骨细胞仍然可行,其特征是荧光显微镜。在体内,DNA水凝胶促进了大鼠颅关临界大小缺陷中新骨的形成,其特征在于微型计算机断层扫描和组织学。本研究使用DNA水凝胶作为潜在的治疗生物材料来再生骨骼。
他汀类药物是 3-羟基-2-甲基戊二酰辅酶 A (HMG-CoA) 还原酶(一种限制胆固醇合成速度的酶)的特异性抑制剂,在高脂血症和动脉粥样硬化的治疗中发挥作用。多项研究报道了他汀类药物对骨质疏松症、血管生成、成骨作用和炎症调节的作用 (10, 11)。瑞舒伐他汀 (RSV) 是一类第二代亲水性他汀类药物,在减少脂肪和预防心血管疾病方面发挥作用 (12)。由于其亲水性,RSV 不易穿透细胞的双层脂质膜,需要特殊载体才能进入细胞。除了抗炎作用外,RSV 还可以刺激成骨作用、分化成骨细胞并减少氧化应激 (13)。这种他汀类药物通过增加一氧化氮的产生和抑制磷选择素的合成来帮助减轻炎症 (14)。 RSV 能降低破骨细胞活性,刺激成骨细胞分化,并促进骨矿化。它能增加骨形态发生蛋白 (BMP)-2 的表达和碱性磷酸酶 (ALP) 的活性 (10)。BMP-2 作为一种骨诱导因子,通过增加骨诱导基因的转录来促进骨形成,并刺激未成熟间充质细胞(包括成骨细胞)的分化。因此,与那些价格昂贵、半衰期短且可能因分子量高而引起免疫刺激的生长因子相比,BMP-2 的使用将更具优势 (10, 15)。
存活率 前列腺癌骨转移的独特之处在于,它会诱发骨质异常生长,这是由于肿瘤分泌的骨形态发生蛋白 4 (BMP4) 会诱发成骨细胞增多。将药物与靶向转移性肿瘤病灶内肿瘤诱导骨区域的物质结合是一种很有前途的药物输送策略。为了制定这样的策略,我们将近红外 (NIR) 荧光探针 Cy5.5 染料与靶向骨的阿仑膦酸钠结合,以作为药物的替代物。红外光谱等表征证实了 Cy5.5-ALN 结合物的合成。游离 Cy5.5 的最大吸光度在 675 nm 处,结合后没有变化。阿仑膦酸钠以剂量依赖性方式靶向骨成分羟基磷灰石,最高浓度为 2.5 μM,其中 Cy5.5-ALN 最多可与羟基磷灰石结合 85%,而单独的游离 Cy5.5 结合率为 6%。在体外细胞结合研究中,Cy5.5-ALN 特异性地与分化的 MC3T3-E1 细胞或 2H11 内皮细胞的矿化骨基质结合,这些细胞通过内皮细胞向成骨细胞的转变被诱导成为成骨细胞,这是前列腺癌诱导骨形成的潜在机制。Cy5.5- ALN 和游离 Cy5.5 均不与未分化的 MC3T3-E1 或 2H11 细胞结合。在非肿瘤小鼠中进行的骨靶向效率研究表明,注射 Cy5.5-ALN 后,脊柱、下颌、膝盖和爪子会随时间推移而积累,定量分析显示,在长达 28 天内,股骨中的积累高于肌肉中的积累,而游离 Cy5.5 染料在循环中没有优先积累,并且随着时间的推移而减少。当注射的 Cy5.5-ALN 浓度在 0.313 至 1.25 nmol/27 g 小鼠之间时,与荧光呈线性关系,在体内和体外对小鼠股骨进行量化。裸鼠体外骨靶向效率评估显示,骨形成 C4-2b-BMP4 肿瘤比非骨形成 C4-2b 肿瘤高 3 倍(p 值 < 0.001)。肿瘤的荧光显微镜成像显示,Cy5.5-ALN 与肿瘤诱导骨周围的骨基质共定位,但不与活肿瘤细胞共定位。总之,这些结果表明,药物-ALN 结合物是一种很有前途的方法,可以向前列腺癌转移灶中的肿瘤诱导骨区域靶向输送药物。
骨诱导材料通过生长因子或信号蛋白(包括骨形态发生蛋白(BMP))的作用在骨质或非骨质环境中诱导骨形成。这些蛋白质刺激祖细胞转化为骨形成成骨细胞。2,9通常称为骨诱导的材料本质上包括脱矿物骨基质(DBM)和BMP产物。Zimmer生物量生物学产品适合此类别的产品包括:stagraft DBM产品(Putty*,Plus,* comellous DBM海绵和条带),奖励CC基质基质骨移植系统和Eorivabone骨移植替代品。此外,这些产品还具有骨电导性特性。
摘要:骨肉瘤是儿童和年轻人中最常见的原发性恶性骨肿瘤。骨肉瘤的标准治疗采用阿霉素、顺铂和高剂量甲氨蝶呤,这一标准在 40 多年中从未改变。患者特异性疗法的开发需要深入了解肿瘤独特的遗传学和生物学。在这里,我们讨论了正常骨生物学在骨肉瘤形成中的作用,强调了驱动正常成骨细胞生成以及异常骨肉瘤发展的因素。然后,我们描述了骨肉瘤的病理学和当前的治疗标准。鉴于骨肉瘤肿瘤的复杂异质性,我们探索了针对一系列分子靶点的新型骨肉瘤治疗方法的开发。对致病机制的分析将为骨肉瘤未来的治疗研究提供有希望的途径。