▪NASA目标:监视可能击中地球的小行星在NASA的公众优先列表中排名最高。监视地球的气候系统也是NASA的优先级。,但相对较少的美国人说,将人类宇航员送往月球或火星应该是重中之重。▪太空旅游:55%的美国成年人预计,未来50年的游客将经常在太空中旅行。但是,美国人对自己旅行并不热心:35%的人说他们对在航天器中绕地球的旋转感兴趣,而65%的人说他们对此不感兴趣。▪对私人太空公司的评估:越来越多的美国人认为私人太空公司在做一个好工作要比建立安全可靠的航天器的工作要好得多,为太空探索做出了重要贡献,并为更多的人开放了太空旅行。仍然,许多人不确定私人公司在这些领域的表现,反映出对它们的熟悉程度有限。,公众在私人太空公司的行为如何限制了火箭和卫星的空间中的限制碎片时的积极语气:26%的人说他们做得不好,而21%的人说他们做得很好(53%的人说他们不确定他们不确定)。▪美国人与太空的互动:47%的美国人说,去年他们至少进行了与太空相关的四个活动中的至少一项,其中包括26%的人说他们已经看过来自太空望远镜的图像,例如詹姆斯·韦伯太空望远镜。
3 EPCA中“通用服务白炽灯”的法定定义不包括以下白炽灯:(i)设备灯; (ii)黑色灯; (iii)一个错误灯; (iv)彩色灯; (v)红外灯; (vi)左侧线灯; (vii)海洋灯; (viii)海洋信号服务灯; (ix)矿山服务灯; (x)植物灯; (xi)反射灯灯; (xii)粗糙的使用灯;(xiii)耐碎的灯(包括防碎灯和碎裂的灯); (xiv)标志使用灯; (xv)银碗灯; (xvi)展示灯; (xvii)三向白炽灯;(xviii)交通信号灯; (xix)振动服务灯; (xx)直径为5英寸或更多的G形灯(如ANSI C78.20-2003和C79.1-2002所定义); (xxi)T形灯(如ANSI C78.20-2003和C79.1-2002所定义)[和],它使用不超过40瓦或长度超过10英寸; (xxii)A B,BA,CA,F,G16–1/2,G – 25,G30,S或M – 14灯(如40瓦或更少的ANSI C79.1-2002和ANSI C79.1-2002和ANSI C78.20-2003)或更少。42 U.S.C. 6291(30)(d)(ii)。 这些是法定定义的“豁免”,根据42 U.S.C. 6295(i)(6)(a)(i)。42 U.S.C.6291(30)(d)(ii)。这些是法定定义的“豁免”,根据42 U.S.C.6295(i)(6)(a)(i)。
摘要 本研究提出了一种用于脑机接口 (BMI) 的小型双波段植入式天线,可在工业、科学和医疗 (915 MHz、2.45 GHz) 频段工作。该天线灵活且尺寸小巧,易于集成到植入式设备中,同时其双波段谐振可实现节能运行。通过参数分析和优化,天线实现了小型化,且不影响性能。采用缝隙接地和贴片短路针技术实现双波段操作,天线和 BMI 设备的小型化尺寸分别为 9.8 mm 3 和 420 mm 3。对于实际场景,使用具有不同层的七层大脑模型和真实的头部模型来分析天线在异构环境中的性能。如果最大辐射功率在 915 和 2450 MHz 下分别低于 10.1 和 8.1 mW,则计算出的最大特定吸收率 (SAR) 值满足 IEEE 植入式医疗设备安全标准 C95.1-1999 和 C95.1-2005。为了验证模拟结果,用碎猪肉对制作的原型进行测试,得到令人印象深刻的 165 MHz 和 625 MHz 阻抗带宽。测量结果显示在 915 MHz 和 2.4 GHz 频率下分别有 -28.3 dBi 和 -18.5 dBi 的显著增益。这些发现验证了模拟的准确性,没有任何偏差。此外,链路预算分析结果表明天线系统可以以 100 kbps 的数据速率传输长达 10 m 的信号。
摘要 医疗保健技术的进步要求开发高效、微型的植入式医疗设备。本文介绍了一种用于头皮生物医学应用的超宽带植入式天线,涵盖工业、科学和医疗 (ISM)(2.4 − 2.48 GHz)频段。所提出的天线安装在 0.1 − mm 厚的液晶聚合物 (LCP) Roger ULTRALAM(tan δ = 0.0025 和 ε r = 2.9)上,用作覆盖层和基底层的介电材料。LCP 材料因其柔韧性、顺应性结构和生物相容性等理想特性而广泛用于制造电子设备。为了保持电气小辐射器的能力并实现最佳性能,所提出的天线的体积设计为 9.8 mm3(7 mm × 7 mm × 0.2 mm)。在辐射贴片中增加短路针和开口槽,以及在接地平面中增加封闭槽,有利于天线的小型化、阻抗匹配和带宽扩展。值得注意的是,该天线在 ISM 频段的峰值增益为 − 20.71 dBi,阻抗匹配带宽为 1038.7 MHz。此外,根据基于低特定吸收率的 IEEE C905.1-2005 安全指南,该天线可以安全使用。为了评估植入式天线的性能,在均质和异构环境中进行了有限元仿真。为了验证,在装满碎猪肉的容器中进行测量。模拟结果与测量结果一致。此外,还进行了链路预算分析,以确认无线遥测链路的稳健性和可靠性,并确定植入式天线的范围。
学生可视化堆肥项目的水持有能力突出显示自助餐厅食物浪费:在三所学校进行了七个月后,该项目将12吨的食物浪费转移,并将其与24吨碎木混合。他们填充了37个生物反应器,这将产生足够的成品,以接种13,000英亩的农业土地。将土壤重新栩栩如生:Johnson-Su产品应用有益的微生物学来提高整体土壤健康和功能。该产物具有大量微生物的土壤,可以使任何农业系统受益。将生物活性恢复到降解的土壤中可以增加农作物产量,土壤水分能力和土壤碳固醇。增加对堆肥的访问:该项目与Frontier Food Hub合作,这是一家非营利组织,将向他们已经建立了关系的生产商提供Johnson-Su接种剂。与蠕虫教学:该项目为每个教室提供了自己的蠕虫来照顾 - 对学生的有趣而动手的责任。经过一系列的每月课程,每个教室都会旅行与以他们命名的生物反应器分享蠕虫。老师和学生的回应是压倒性的。青年应对气候危机:该项目雇用了15至20岁的当地青年,提供了一份户外活动,有意义和社交的工作。年轻员工从体面的工资和灵活的时间中受益。
通过攻击害虫或其他机械损伤释放出一种假定的伤口激素,该激素在整个植物中释放出诱导叶子以引发叶子来引发合成并积聚两个丝氨酸内肽酶的蛋白质含量(1)。该蛋白酶抑制剂诱导因子(PIIF)一直与大小变化的多糖始终相关(2),这表明PIIF活性可能与特定的糖序或结构固有。最近,MR 5000- 10,000的高活性番茄PIIF部分被证明是果多糖。它的位置类似于酶促产生的nicamore细胞壁的碎片,该薄膜壁是200,000的MR,其具有与番茄PIIF相似的效率(3)。该证据表明PIIF活性可能与植物细胞壁的结构成分有关。但是,鉴于大小的大小。番茄果果多糖和nicamore细胞壁碎片均可质疑它们在体内受伤后是否会通过植物血管系统迅速运输。- 在这种交流中,我们报告了一种纯galactu -ronase纯化。真菌根瘤菌(4)将番茄piif降解为寡糖,当蛋白酶抑制剂I的活性诱导剂提供给切除的番茄叶时。我们还表明,部分纯化的两个末代乳乳糖酶的混合物。番茄水果,将番茄PIIF和纯化的番茄细胞壁降解为PIIF活性寡糖。这些结果表明,细胞损伤在体内产生的PIIF活性位于植物细胞壁的小水解碎片中。
1.00850Chromocult®Coliform琼脂ES用于食品和动物饲料中大肠菌菌和大肠杆菌的检测。e是提高选择性的,因为食品基质中的预期细菌背景菌群较高,例如生碎牛肉,生碎鸡肉和生牛奶(经AOAC验证)。44657 ECD杯琼脂此大肠杆菌直接琼脂中的胆汁盐混合物广泛抑制伴随植物群的非渗透性肠道。荧光底物杯子的裂解和阳性测试证明了大肠杆菌的存在。1.10620Fluorocult®LMX肉汤,用于通过发色和荧光过程同时检测水,食物和乳制品中大肠菌细菌和大肠杆菌。81938 Hicrome™大肠菌琼脂推荐用于同时检测水和食物样品中的大肠杆菌和总大肠菌群。发色混合物含有两个发色底物,鲑鱼 - 盐和X-葡萄糖苷。大肠菌群产生的酶β-D-半乳糖苷酶裂解了鲑鱼,从而导致鲑鱼变成大肠菌群的红色。大肠杆菌裂解X-葡萄糖醛酸的酶β-D-葡萄糖醛酸苷酶(深蓝色至紫色的菌落与两种活性结合使用)。70722 Hicrome™大肠杆菌琼脂B hicrome E. Coli琼脂B用于食品中大肠杆菌的检测和枚举,而无需在膜过滤器上或通过吲哚试剂进行进一步确认。大多数大肠杆菌菌株可以通过存在高度特异性大肠杆菌的酶葡萄糖醛酸酶来区分其他大肠菌菌。大肠杆菌细胞吸收X-葡萄糖醛酸酯,细胞内葡萄糖醛酸酶分裂发色团和葡萄糖醛酸苷之间的键。释放的发色团给出了菌落的蓝色。73009 Hicrome™ECC琼脂Hicrome ECC琼脂是一种差异培养基,用于推定大肠杆菌和其他大肠菌群中的食品和环境样品中的其他大肠菌群。发色混合物包含两个染色体,作为X-葡萄糖醛酸和鲑鱼 - 盐。X-葡萄糖醛酸是由大肠杆菌产生的酶β-葡萄糖醛酸酶裂解的。鲑鱼 - 盐 - 由大多数大肠菌群(包括大肠杆菌)产生的酶半乳糖苷酶裂解。大肠杆菌菌落的颜色:蓝色/紫色85927 Hicrome™ECC选择性琼脂hicrome ecc选择性琼脂是一种选择性(tergitol作为抑制剂)培养基,建议同时检测水和食品样品中的大肠杆菌和大肠杆菌。成分甚至有助于共同受伤的大肠菌群迅速生长。发色混合物包含两个发色底物,作为鲑鱼 - 果胶和X-glucuronide。大肠菌群产生的酶β-D-半乳糖苷酶裂解了鲑鱼,从而导致鲑鱼变成大肠菌群的红色。大肠杆菌裂解X-葡萄糖醛酸酶产生的酶β-D-葡萄糖醛酸苷酶。大肠杆菌由于鲑鱼和X-glucuronide的裂解而形成了深蓝色至紫色的有色菌落。
1。范围1.1本技术指南注释(TGN)补充和更新GEO报告中给出的相关指南270(Kwan,2012)和Geo TGN No. 47(Geo,2023d)关于岩土稳定性,结构完整性和刚性碎屑障碍物的偏转器设计的细节。 1.2有关此TGN的任何反馈都应直接针对岩土工程办公室(GEO)的首席岩土工程师/ Landslip预防措施2。 2。 技术政策2.1该TGN中颁布的技术建议于2020年12月24日由Geo Geotechnical Control会议一致。 3。 相关文档3.1 GEO(2023a)。 耐碎碎片屏障设计的补充技术指南(GEO TGN 33)。 岩土工程办公室,香港,1页。 3.2 GEO(2023b)。 详细介绍了耐碎屑的屏障(GEO TGN 35)。 岩土工程办公室,香港,第8页。 3.3 GEO(2023C)。 评估抗碎片屏障设计的滑坡碎片撞击速度(GEO TGN 44)。 岩土工程办公室,香港,第4页。 3.4 Geo(2023d)。 耐碎屑壁垒的设计指南的更新(GEO TGN 47)。 岩土工程办公室,香港,第4页。 3.5 Kwan,J.S.H。 (2012)。 刚性碎片障碍的设计补充技术指南(GEO报告号 270)。 岩土工程办公室,香港,第88页。 3.6 LO,D.O.K。 (2000)。 自然地形滑坡杂物屏障设计的审查(GEO报告号270(Kwan,2012)和Geo TGN No.47(Geo,2023d)关于岩土稳定性,结构完整性和刚性碎屑障碍物的偏转器设计的细节。1.2有关此TGN的任何反馈都应直接针对岩土工程办公室(GEO)的首席岩土工程师/ Landslip预防措施2。2。技术政策2.1该TGN中颁布的技术建议于2020年12月24日由Geo Geotechnical Control会议一致。3。相关文档3.1 GEO(2023a)。耐碎碎片屏障设计的补充技术指南(GEO TGN 33)。岩土工程办公室,香港,1页。 3.2 GEO(2023b)。详细介绍了耐碎屑的屏障(GEO TGN 35)。岩土工程办公室,香港,第8页。 3.3 GEO(2023C)。评估抗碎片屏障设计的滑坡碎片撞击速度(GEO TGN 44)。岩土工程办公室,香港,第4页。 3.4 Geo(2023d)。耐碎屑壁垒的设计指南的更新(GEO TGN 47)。岩土工程办公室,香港,第4页。 3.5 Kwan,J.S.H。(2012)。刚性碎片障碍的设计补充技术指南(GEO报告号270)。岩土工程办公室,香港,第88页。 3.6 LO,D.O.K。(2000)。自然地形滑坡杂物屏障设计的审查(GEO报告号104)。岩土工程办公室,香港,第91页。 3.7 Wong,L.A.,Lam,H.W.K.,Lam,C。&Kwan,J.S.H。(2022)。关于耐碎屑障碍的设计技术开发工作(GEO报告号358)。岩土工程办公室,香港,第397页。
产品类型或同义词:生物指标产品描述:用于监测灭菌过程疗效的生物学指标。设备由密封的玻璃放大器组成,并包含液体介质,pH指示器和细菌孢子。注意:设备没有危险成分或致病性微生物。制造者:Mesa Laboratories,Inc。625 Zoot Way Bozeman,MT 59718 USA(303)987-8000紧急电话:(303)987-8000 2。危害识别产品含有玻璃和液体,偶然时可能会进入皮肤或眼睛,从而导致轻伤和/或刺激。3。成分生长介质成分的组成/信息:由B-D,pH指标和专有配方制造的大豆酪蛋白摘要。无害。生物学信息:从可追溯来源获得的细菌孢子。自然发生。非致病性。4。急救措施皮肤接触:在正常情况下,与产品接触不应导致皮肤刺激。如果液体培养基与皮肤接触,请与肥皂和水洗涤。如果将安大哥碎,玻璃碎片可能会进入手或手指。用镊子去除碎片,然后将消毒剂涂在切割区域中。眼神交流:如果液体培养基进入眼睛,则用水冲洗。如果将安木粉碎,玻璃碎片可能会进入眼睛。不要眼睛。用水冲洗。如果无法用水脱落玻璃,则可能需要医疗援助。吸入:不可能接触的途径。5。摄入:不是可能的接触途径。注意:由于暴露于该产品中包含的微生物,没有已知的健康危害。消防措施N/A
雪松是一种独特的松树,以其木油而闻名。其传统治疗用途主要是抗菌和抗炎。本研究旨在调查从碎木中提取的雪松精油 (CDEO) 的抗菌特性。体外和原位评估了 CDEO 对抗革兰氏阴性 (G - ) 细菌的抗菌活性,其中包括铜绿假单胞菌 CCM 1595、肠道沙门氏菌肠道亚种 CCM 3807 和革兰氏阳性 (G + ) 细菌小肠结肠炎耶尔森氏菌 CCM 5671。单核细胞增生李斯特菌 CCM 4699、金黄色葡萄球菌金黄色葡萄球菌亚种 CCM 2461 和链球菌 CCM 4043。纸片扩散法最佳抑菌范围为4.67~9.67 mm,最低抑菌浓度范围为1.48~5.44 mg.mL -1 。对金黄色葡萄球菌和单核细胞增生李斯特菌的抑菌效果最明显。所用气相在较低的CDEO浓度62.5 µg.L -1下对猕猴桃模型中的铜绿假单胞菌和香蕉模型中的单核细胞增生李斯特菌表现出最佳抑菌效果,在较高的CDEO浓度500 µg.L -1下对马铃薯模型中的铜绿假单胞菌和黄瓜模型中的小肠结肠炎耶尔森菌表现出最佳抑菌效果。CDEO对蔬菜水果模型上的细菌表现出良好的抑菌效果,可能成为蔬菜水果储藏的新型防腐剂。
