建模3D对象有效地成为计算机视觉研究中的一个核心主题。传统代表涉及几何表示的网格,体素网格以存储SDF或占用率之类的值或用于外观建模的UV地图。由于其离散的性质,其表示功能受硬件限制的约束。采用多层感知器(MLP)允许形状[5,10,22,29,30],辐射场[24],纹理[17,20,28,47]等的高质量表示。Mildenhall等。[24]表明,高视觉保真度是使用频率编码来编码功能的关键。近年来,由于使用较小的MLP,大大提高了训练和推理速度,多分辨率参数编码变得越来越流行。尽管如此,由于其直观的编辑功能和有利的动画可能性,许多应用程序仍然依赖网格作为对象表示。不幸的是,直接在网格上进行了少数作品铲球外观建模。先前的工作将纹理直接作为3D空间中的连续函数回归[28],并使用频率编码[1,40]。内在的编码[17]也被引入以解锁更大的视觉细节。Mahajan等。[20]提出了一个有效的多解决顶点 -
患有幻觉,从而降低了普遍性。直接应用先前的 INR 无法弥补这种信号强度不足,因为它们既适合信号也适合干扰因素。在这项工作中,我们引入了一个 INR 框架来增加这种体积描记器信号强度。具体来说,我们利用架构来实现选择性表示能力。我们能够将面部视频分解为血液体积描记器组件和面部外观组件。通过从该血液成分推断体积描记器信号,我们在分布外样本上展示了最先进的性能,而不会牺牲分布内样本的性能。我们在定制的多分辨率哈希编码主干上实现了我们的框架,通过比传统 INR 快 50 倍的速度实现实用的数据集规模表示。我们还提供了一个光学上具有挑战性的分布外场景的数据集,以测试对真实场景的泛化。代码和数据可以在 https://implicitppg.github.io/ 找到。
使用概率的量子力学观点扩展经典概率推理最近引起了人们的兴趣,特别是在开发隐量子马尔可夫模型 (HQMM) 来模拟随机过程方面。然而,在表征此类模型的表现力和从数据中学习它们方面进展甚微。我们通过展示 HQMM 是一般可观察算子模型 (OOM) 类的一个特殊子类来解决这些问题,这些模型在设计上不会受到负概率问题的影响。我们还为 HQMM 提供了一种可行的基于回缩的学习算法,该算法使用模型参数 Stiefel 流形上的约束梯度下降。我们证明这种方法比以前的学习算法更快,并且可以扩展到更大的模型。
印度隐藏在加密图像(RDHEI)中的摘要可逆数据是一种将秘密信息嵌入加密图像中的技术。它允许提取秘密信息和无损解密以及原始图像的重建。本文提出了一种基于Shamir的秘密共享技术和多项目构建技术的RDHEI技术。我们的方法是让图像所有者通过对像素并构造多项式来隐藏多项式的系数中的像素值。然后,我们通过Shamir的秘密共享技术将秘密钥匙替换为多项式。它使Galois字段计算能够生成共享像素。最后,我们将共享像素分为8位,然后将它们分配给共享图像的像素。因此,嵌入式空间被腾空,生成的共享图像隐藏在秘密消息中。实验结果表明,我们的方法具有多个隐藏机制,并且每个共享图像具有固定的嵌入率,随着更多图像的共享,该机制不会降低。此外,与先前的方法相比,嵌入率得到提高。简介多媒体安全技术用于防止未经授权的用户复制,共享和修改媒体内容。为了防止此问题,加密和信息隐藏通常用于保护媒体内容。就信息隐藏技术而言,传统信息隐藏技术将破坏封面图像的内容。因此,这些图像是否可以完全恢复非常重要。但是,在某些例外情况下,例如军事,医疗和法律文档图像,图像的轻微失真是完全无法接受的。可逆数据隐藏方案(RDH)可以与无损的要求相对应。RDH方法应用了更改上下文的方法,以在封面媒体中隐藏秘密数据。数据提取后,不断变化的上下文将被充分回收到封面媒体。另一方面,RDHEI(隐藏在加密图像中的可逆数据)技术可以将加密技术与RDH技术相结合,RDH技术不仅可以在图像中隐藏秘密信息,而且还可以加密图像以保护图像内容。Visual密码学是一种加密技术,允许视觉信息(图片,文本等)要加密的方式使解密成为不需要计算机的机械操作。
。cc-by 4.0未经同行评审获得的未获得的国际许可证是作者/筹款人,他已授予Biorxiv的许可证,以永久显示预印本。它是制作
1966 年,Ian McWhinney 认为全科医生应该成为一门学科,并预测其研究将在知识分支汇聚的暮光之城蓬勃发展。1 在本期《年鉴》的一篇评论中,Kueper 等人通过描述自 1986 年以来一直隐藏在众目睽睽之下的研究集合,发现了计算机科学与初级保健交界处的一个区域。2 通过连接两个学科,这 405 篇文章构成了一个重点领域——初级保健人工智能——这对初级保健研究人员来说可能很新,但已经产生了令人印象深刻的汇编。尽管进行了这些工作,但由于缺乏初级保健社区的参与,初级保健人工智能未能改变初级保健。与健康信息技术类似,初级保健人工智能应旨在改善医疗服务和健康结果 3 ;使用这个基准,它还没有产生影响。尽管它的历史跨越了 40 年,但初级保健人工智能仍然处于“成熟的早期阶段”,因为很少有工具被实施。2 当每 7 篇论文中只有 1 篇包括初级保健作者时,改变初级保健是困难的。2 如果没有初级保健的投入,这些团队可能无法掌握初级保健数据收集的背景、它在卫生系统中的作用以及影响其发展的力量。
“如果我想制作任意三维形状,比如手臂或抓手,我必须排列液晶,这样当受到刺激时,这种材料就会自发地重新组合成那些形状,”塞拉说。“到目前为止,缺少的信息是如何控制液晶排列的三维轴,但现在我们有办法实现这一点。”
惯性质量,J 101 537 . 5 kg m 2 阻尼,B 100 N ms / rad 极对数,p 2 变速箱速比,N 24 . 12 叶片长度 + 轮毂,R m 13 . 5 m 转子电阻,R r 0 . 007 645 44 Ω 转子电感,L r 0 . 007 067 33 H 定子电阻,R s 0 . 009 585 76 Ω 定子电感,L s 0 . 000 252 35 H 定子电流。 d 轴,isdisd ≥ 0 A 定子频率,ω s ω s ≥ 0 rad / s 初始转子频率,ω r 0 2 rad / s 转子频率,ω r ω r ∈ [ 0 , 9 . 208 ] rad / s 直流母线电压,vv ∈ [ 437 , 483 ] V (460 V ± 5%) 直流母线电阻,R 1000 Ω 直流母线电容,C 0 . 1 F 连接电感,L 0 . 001 H 连接电阻,R 0 . 05 Ω 时间窗口 600 s 直流母线电压,vv ′′ ∈ [ − 20 , 20 ] V / s 2
由库存定义(上图)。第1阶段中的所有对具有水平或垂直方向相同的基础结构。图中的颜色仅用于说明目的;对于参与者,所有形状都是黑色的。中断:在第1阶段之后,在两分钟至24小时之间的五个实验中有一个破裂。参与者在睡眠或清醒状态中度过了休息。训练阶段2:休息后,参与者接触了由不同抽象形状组成的视觉场景。新库存的创建对的一半具有水平,而另一半具有垂直的底层结构。2AFC测试试验:在第2阶段之后,参与者完成了一系列2AFC测试试验,在这些试验中,他们不得不确定训练阶段的真实对还是由形状随机组合创建的箔对,更熟悉。汇报:最后,参与者回答了有关实验的开放性问题,这些问题用于评估他们是否获得了有关形状对的存在的明确知识。
抽象铁稳态对于维持正常的生理脑功能很重要。在两个独立的样本中,我们研究了基底神经节(BG)中的铁浓度与隐式序列学习(ISL)之间的联系。在研究1中,我们使用定量敏感性映射和与任务相关的fMRI来检查年轻和老年人中区域铁浓度测量,脑激活和ISL之间的关联。在研究2中,我们使用fMRI衍生的度量在老年人的年龄样本中使用了fmri衍生的度量来检查脑铁与ISL之间的联系。获得了三个主要发现。首先,在两项研究中,BG铁浓度与ISL呈正相关。第二,ISL对年轻人和老年人都很健壮,并且在两个年龄段的额叶区域中都发现了与性能相关的激活。第三,BG铁与额叶区域中与任务相关的粗体信号的正相关。这是研究脑铁积累,功能性脑激活和ISL之间关系的第一项研究,结果表明,在此特定任务中,较高的脑铁浓度可能与更好的神经认知功能有关。