基于能量的模型 (EBM) 因其在似然建模中的通用性和简单性而具有吸引力,但传统上很难训练。我们介绍了在连续神经网络上扩展基于 MCMC 的 EBM 训练的技术,并展示了它在 ImageNet32x32、ImageNet128x128、CIFAR-10 和机器人手轨迹的高维数据域上的成功,获得了比其他似然模型更好的样本,接近当代 GAN 方法的性能,同时覆盖了数据的所有模式。我们重点介绍了隐式生成的一些独特功能,例如组合性和损坏图像重建和修复。最后,我们表明 EBM 是适用于各种任务的有用模型,实现了最先进的分布外分类、对抗鲁棒分类、最先进的持续在线类学习和连贯的长期预测轨迹推出。
步态适应对新的环境,设备或身体的变化,可以由能量消耗的持续优化驱动。然而,能量优化是否涉及隐式处理(自动发生,并以最少的认知注意力发生),显式处理(有意识地使用邀请策略有意识地发生)或两者结合尚不清楚。在这里,我们使用了双任务范式来探测在步行过程中能量优化中隐式和明确过程的贡献。为了创建我们的主要能量优化任务,我们使用了下LIMB外骨骼将人们的能量最佳步骤频率转移到低于正常优选的频率。我们的次要任务旨在从优化任务中引起明确的关注,是听觉音调歧视任务。我们发现,添加此次要任务并不能阻止步行过程中的能量优化。我们的双任务实验的参与者将其步骤频率调整为Optima的量,并以与我们以前的单任务实验中的参与者相似的速度。我们还发现,当参与者适应能量Optima时,在语调歧视任务上的表现并没有恶化。当外骨骼改变能量最佳步态时,精度得分和反应时间保持不变。调查回答表明,双重任务参与者在很大程度上不知道适应过程中对步态的变化,而单任务参与者更加了解他们的步态变化,但并未利用这种明确的意识来改善步态适应性。共同表明能量优化涉及隐式处理,从而使注意力资源可以针对步行过程中其他认知和运动目标。
摘要:研究了焊接联合制造对焊接到玻璃环氧基板(FR4)的IGBT的热性能的影响。使用厚度为1.50 mm的玻璃 - 环氧基底,覆盖有35 µm厚的Cu层。从热空气平整(HAL)SN99CU0.7AG0.3层厚度为1÷40 µm。 IGBT晶体管ngb8207亿固定在sacx0307(sn99ag0.3cu0.7)糊中。样品被焊接在不同的焊接和不同的温度下框架中。测量了样品的热阻抗z t(t)和热电阻。进行了微观结构和空隙分析。发现不同样本的差异分别达到z th(t)和rth的15%和20%。尽管焊接接头中气体的比率在3%至30%之间变化,但发现空隙比与r TH的增加之间没有相关性。在不同的焊接技术的情况下,焊接接头的微观结构在金属间化合物(IMC)层的厚度上显示出显着差异。这些差异与焊接过程中Lilesus上面的时间息息相关。与焊料的热导率相比,IGBT的热参数可以更改,因为IMC层的导热率增加。我们的研究强调了使用IGBT组件组件的焊接技术的重要性和热量文件的重要性。
摘要。密码学和隐身志摄影是信息安全性的两个主要组成部分。利用加密和隐身来建立许多保护层是一种值得称赞的方法。我们本文的主要目的是通过密码和隐身术的结合来构建一种综合方法,以安全地传输数据。密码学和隐身志学是秘密传输信息的两种常见方法。rc4在本文中用于将信息从明文更改为密码,然后将密码文本集成到图像中至少有显着位(LSB)。结果是根据处理时间,峰值信号 - 噪声比率(PSNR)和均方误差(MSE)定义的。实验结果表明,Stego图像的可接受质量,并将两种技术结合起来为原始隐肌提供了额外的安全性。
DNA由于其固有的生物分子结构而引起,由于其令人印象深刻的储存密度和长期稳定性,它具有出色的潜力作为数据存储解决方案。但是,开发这种新型媒介有其自身的挑战,尤其是在解决储存和生物操纵引起的错误时。这些挑战进一步由DNA序列的结构限制和成本考虑。响应这些局限性,我们开创了一种新颖的压缩方案和使用神经网络进行DNA数据存储的尖端多重描述编码(MDC)技术。我们的MDC方法引入了一种创新方法,将数据编码为DNA,该方法专门设计用于有效承受错误。值得注意的是,我们的新压缩方案过于表现DNA-DATA存储的经典图像压缩方法。此外,我们的方法比依赖自动编码器的常规MDC方法具有优越性。其独特的优势在于它绕过对广泛模型训练的需求及其对微调冗余水平增强的适应性的能力。实验结果表明,我们的解决方案与现场最新的DNA数据存储方法竞争,提供了出色的压缩率和强大的噪声弹性。
Privacy Act 1988 (《 1988 年隐私法》)包含澳大利亚关 于隐私的 13 项原则,规范了内政部收集及处理个人信 息的方式。内政部如何为了履行其主要职能而收集、 使用及披露个人信息的请见表 1442i Privacy notice (《关 于隐私的通知》)。关于内政部处理一般资料的做法 (包括于表 1442i 中)的情况请见内政部的隐私政策: https://www.homeaffairs.gov.au/access-and- accountability/our-commitments/privacy
摘要 —近年来,椭圆曲线 Qu-Vanstone (ECQV) 隐式证书方案已应用于安全凭证管理系统 (SCMS) 和安全车对万物 (V2X) 通信以颁发假名证书。然而,椭圆曲线密码 (ECC) 易受量子计算带来的多项式时间攻击的弱点引起了人们的担忧。为了增强对量子计算威胁的抵抗力,各种后量子密码方法已被采用作为标准 (例如 Dilithium) 或候选标准方法 (例如 McEliece 密码),但事实证明,使用基于格的密码方法实现隐式证书具有挑战性。因此,本研究提出了一种基于高效随机可逆矩阵生成方法的后量子密码 McEliece-Chen (PQCMC),以更少的计算时间颁发假名证书。该研究提供了数学模型来验证隐式证书的密钥扩展过程。此外,还进行了全面的安全性评估和讨论,以证明不同的隐式证书可以链接到同一个终端实体。在实验中,对证书长度和计算时间进行了比较,以评估所提出的 PQCMC 的性能。这项研究证明了基于 PQC 的隐式证书方案作为对抗量子计算威胁的手段的可行性。
由于具有促进安全性和散装嵌入能力的潜力,生成图像隐志的最新进展引起了人们的关注。但是,通常用于特定任务的生成隐志方案,并且几乎不应用于具有实际约束的应用。为了解决这个问题,本文提出了一种通用的生成图像steganography方案,称为隐肌Stylegan(Stegastylegan),该方案符合同一框架内的安全性,容量和稳健性的实际目标。在Stegastylegan中,使用新颖的分布保护秘密数据模块(DP-SDM)用于通过保留模型输入的数据分布来实现可证明的固定构成图像隐肌。此外,发明了一种通用和有效的秘密数据提取器(SDE),以进行准确的秘密数据提取。通过选择是否在训练过程中合并图像攻击模拟器(IAS),一个人可以获取两个具有不同参数但相同结构(发电机和提取器)的模型,以进行无损和有损的通道隐秘通信,即Stegastylegan-ls and Stegastylegan和Stegastylegan。此外,通过与GAN倒置交配,也可以实现有条件的生成型软糖。实验结果表明,无论是对于无损或有损的通信陈列而言,提出的Stegastylegan都可以显着超过相应的最新计划。
DNA 因其固有的生物分子结构而具有惊人的存储密度和长期稳定性,因此作为数据存储解决方案具有巨大的潜力。然而,开发这种新型介质也面临着一系列挑战,特别是在解决存储和生物操作中出现的错误方面。这些挑战还受到 DNA 序列的结构限制和成本考虑的影响。为了应对这些限制,我们率先开发了一种新型压缩方案和一种利用神经网络进行 DNA 数据存储的尖端多描述编码 (MDC) 技术。我们的 MDC 方法引入了一种将数据编码到 DNA 中的创新方法,专门设计用于有效抵抗错误。值得注意的是,我们的新压缩方案优于用于 DNA 数据存储的经典图像压缩方法。此外,我们的方法比依赖自动编码器的传统 MDC 方法更具优势。其独特优势在于它能够绕过大量模型训练的需要,并且具有增强的微调冗余级别的适应性。实验结果表明,我们的解决方案与该领域的最新 DNA 数据存储方法具有优势,具有卓越的压缩率和强大的抗噪能力。
量子力学的不可克隆原理断言量子信息不能被一般复制。这一原理对量子密码学有着深远的影响,因为它从根本上限制了恶意方可以实施的策略。其中一个影响是,量子信息可以实现经典加密无法实现的加密任务,最著名的例子就是信息论安全的密钥分发 [BB84]。除此之外,不可克隆原理还开辟了一条令人兴奋的途径来实现具有某种不可克隆性的加密任务,例如量子货币 [Wie83、AC12、FGH+12、Zha19a、Kan18]、用于数字签名的量子令牌 [BS16]、程序的复制保护 [Aar09、ALL+20、CMP20],以及最近的不可克隆加密 [Got02、BL19] 和解密 [GZ20]。在这项工作中,我们重新审视了 Aaronson 和 Christiano 提出的隐藏子空间思想,该思想已用于上述几个应用。我们提出了这一思想的概括,其中涉及隐藏陪集(仿射子空间),并展示了该思想在签名令牌、不可克隆解密和复制保护中的应用。给定一个子空间 𝐴 ⊆ 𝔽 𝑛 2 ,相应的子空间状态定义为子空间 𝐴 中所有字符串的均匀叠加,即