l指示工作节点上的AS-Interface Safety Nodes的安全代码。地址设备顶部的As-Interface连接适配器用于将AS AS AS AS AS AS AS AS接口节点连接到地址设备,例如传感器,执行器和模块。可以通过将其直接插入AS-Interface Connection适配器:带有M12连接器,Varikont M-System,Varikont System,FP Design的设备,将其连接到地址设备。类型G1和G4。对于具有集成地址插座的设备设计,请使用可选的适配器电缆。
*G60:证书N°53.22.221 Hikmicro G60手持式热摄像机是专门设计用于温度测量的。它配备了640 x 480分辨率的热检测器。它可以帮助工作人员快速找到环境中的高温目标。同时,它为决策提供了帮助并确保安全。该设备主要应用于建筑,HVAC,汽车行业等各个行业。
可读代码条形码类型:代码39,代码39,代码32,代码93,代码11,Codabar,Codabar,代码128,GS1-128 / EAN 128,UPC / EAN / JAN(附加),MSI / PLESSEY,UK / PLESSEY,UK / PLESSEY,UK / PLESSEY,IATA,IATA,IATA,IATA,IATA,ITA,ITAVER 2,5,STARTARDILIAL 2,5,MATRIX 2,5,5,5,5,5,5,5,5,5,5,5 Australian Post, China Post, German Post, US Planet, US Postnet, British Post, Intelligent Mail, Japan Post, Korean Post, Dutch KIX Post stacked code types (depending on model selected): PDF417, MicroPDF417, Code 49, Code 16K, Composite, Codablock F 2-D code types (depending on model selected): Data Matrix, QR, MicroQR, Aztec, Maxicode
Hikmicro M31手持式相机是专门设计用于温度测量的。它配备了384 x 288分辨率的热检测器。它可以帮助工作人员快速找到环境中的高温目标。同时,它为决策提供了帮助并确保安全。该设备主要应用于建筑物,HVAC,汽车行业等各种行业。
Vulos波形在直接视线和SATCOM模式下提供了加密和纯文本语音和数据通信。波形在VHF和UHF频率范围内运行,并使用Vinson(16K KY-57),KG-84 MODES 1-4,ANDVT(KYV-5)和TSV(TSVCIS)提供加密的数据,具有2.4和16k的语音和数据模式。Vulos提供了多种调制,包括FM,FSK,AM,ASK,SBPSK和CPM通信,并且与操作这些模式和调制的实地设备可互操作。使用SBPSK语音和数据模式以及MIL-STDD-1888-181B中所述的SBPSK语音和数据模式,均以窄带(5 kHz)和宽波段(25 kHz)通道宽度提供的卫星操作模式。这些调制也以视线模式在UHF频率范围内提供。fm,fsk,am和询问在VHF和UHF频率范围内以视线模式提供。
目的:测试通过基于深度学习的自动化算法(自动EF)与辛普森方法估计的EF估计的射血分数(EF)的相关性。设计:一项前瞻性观察研究。设置:宾夕法尼亚大学医院的单中心研究。参与者:研究参与者年满18岁,计划接受瓣膜,主动脉,冠状动脉搭桥移植物,心脏或肺部植物手术。干预措施:这项非干预研究涉及使用飞利浦手动超声设备Lumify获取顶端4腔经胸膜超声心动图剪辑。的测量和主要结果:在对54个剪辑的主要分析中,与辛普森的EF估计方法相比,自动EF的偏差(10.17%)和经验丰富的读取器估计的EF(9.82%)相似,但是自动EF(r = 0.56)的相关性比经验丰富的EDERED EDER-EDEREFER-EXEF(r = 0.80)低于自动EF(r = 0.56)。在次级分析中,当将辛普森方法估计的EF与自动EF估计的EF之间的相关性增加了,当将27种采集应用于分类为足够的27种采集(r = 0.86),但是当应用于27次审判时,将减少为不足(r = 0.46)。结论:适用于对足够图像质量的采集,自动ef产生了与辛普森方法相当的数值估计值。但是,当应用于对图像质量不足的采集时,会在自动EF估计的EF和辛普森方法之间产生差异。经验丰富的读者的视觉EF估计与辛普森在变量和不足的成像条件下的方法高度相关,强调了其持久的临床实用性。2024 Elsevier Inc.保留所有权利。
常见首字母缩略词和缩写 $B - 数十亿美元 $K - 数千美元 $M - 数百万美元 ACAT - 收购类别 Acq O&M - 收购相关运营和维护 ADM - 收购决策备忘录 APB - 收购计划基准 APPN - 拨款 APUC - 平均采购单位成本 BA - 预算授权/预算活动 Blk - 区块 BY - 基准年 CAPE - 成本评估和计划评估 CARD - 成本分析要求说明 CDD - 能力开发文件 CLIN - 合同项目编号 CPD - 能力生产文件 CY - 日历年 DAB - 国防收购委员会 DAE - 国防收购执行官 DAMIR - 国防收购管理信息检索 DoD - 国防部 DSN - 国防交换网络 EMD - 工程和制造开发 EVM - 挣值管理 FMS - 对外军售 FOC - 全面作战能力 FRP - 全速率生产 FY - 财政年度FYDP - 未来国防计划 ICE - 独立成本估算 Inc - 增量 IOC - 初始作战能力 JROC - 联合需求监督委员会 KPP - 关键性能参数 LRIP - 低速率初始生产 MDA - 里程碑决策机构 MDAP - 主要国防采购计划 MILCON - 军事建设 N/A - 不适用 O&M - 运营与维护 O&S - 运营与支持 ORD - 作战要求文件 OSD - 国防部长办公室 PAUC - 项目采购单位成本
模型和墨盒角度的差异。知道每个Taser Energy武器模型与墨盒角度之间的区别。M26,X26E和X26P墨盒具有8度角; X2智能墨盒具有7度角; Taser 7墨盒可提供3.5度(对峙)和12度(近四分之一)角度; TASER 10分别部署每个墨盒,没有预设角度。建议的部署距离将取决于使用的型号和墨盒。每个用户应在每个型号和可能在现场使用的墨盒进行适当训练,并知道实现推荐的探针差的所需部署距离。