用仿生血管网络打印人体组织和器官越来越感兴趣。虽然可以将灌注通道嵌入到细胞和密集的细胞矩阵中,但它们目前不具有天然血管中发现的仿生结构。在这里,开发了在功能组织中的同轴牺牲写作(共旋),这是一种嵌入的生物印刷方法,能够在颗粒水凝胶和密度细胞内部的细胞水凝胶中产生分层分支,多层血管网络。同轴打印头的设计具有扩展的核 - 壳配置,以促进嵌入式生物打印过程中印刷的分支容器之间的稳健核心 - 壳和壳壳互连。使用优化的核壳墨水组合,由光滑肌肉细胞壳组成的生物模拟血管同轴印刷成由颗粒状基质组成的:1)透明的alginate Micropoparticles,2)牺牲性微粒胶原蛋白的spe虫,或者来自人类spertiacts spertiacs cardiac cardiac cardiac cardiac sperters sperters carderip衍生。仿生血管。重要的是,发现在灌注下成熟,同步打败并在体外表现出心脏效力的药物反应。这次进步开辟了新的途径,用于针对药物测试,疾病建模和治疗用途的血管化器官特异性组织的可扩展生物制造。
• 材料尺寸:卷对卷,宽度从 8 英寸到 30 英寸,长度不超过 275 英尺。• 装载或卸载时间:少于 1 分钟。• 材料:任何 RA-4 介质和表面,包括背光显示膜。• 打印尺寸:30 英寸 x 连续。图像文件可即时缩放为任何所需的打印尺寸。• 文件类型:TIFF(Mac 或 Windows)、Windows BMP 或 JPEG。RIP 的开放接口。• 物理尺寸:64 英寸长 x 36 英寸宽 x 60 英寸高 (162 厘米 x 91 厘米 x 152 厘米)。• 需要从 3 面进入,最好从所有 4 面进入。通过卸下机柜顶部,可穿过 30 英寸 (76 厘米) 的门。重量:715 磅 (324 千克)。• 日光下操作。暗室加载。• 平台:Windows XP(嵌入打印机)。 • 连接:120/230VAC,1000 W。网络连接 10base T 或 100base T。压缩空气(60-100 psi)。• 打印头:专有 LED 成像技术(已获专利)。利用 ZBE 的 Chromira 成像引擎。• 图像分辨率:300 PPI;采用 ZBE 专利的 LED 分辨率增强技术的 425 PPI 视觉分辨率。• 色彩深度:36 位。• 打印速度:30 英寸纸张每分钟 5 英寸,取决于文件大小和放大或缩小的程度。打印时“即时”执行图像缩放、旋转和色彩平衡。相当于:每小时 62 平方英尺。每 8 小时班次 2 – 100 英尺卷。这相当于:113 – 8”x10” (20.3 x 25.4 厘米) 打印;或每小时 55 张 11”x14” (27.9 x 35.6 厘米) 打印件;或每小时 15 张 20”x24” (50.8 x 61 厘米) 打印件(30” 材料)。
T.-M. Băjenescu,tmbajenesco@gmail.com 收稿日期:2019 年 2 月 8 日 接受日期:2019 年 3 月 15 日 摘要。如今,灵活性意味着生产价格合理、质量上乘的定制产品,并能快速交付给客户。本文分析了与物理相关的问题,这些问题能够产生缺陷,影响 MEMS(微机电系统)的可靠性极限。无论 MEMS 行业的未来前景多么美好,它目前所处的位置都比表面上看起来要脆弱得多。要研究纳米器件的最终可靠性极限,需要全面了解缺陷产生的物理和统计数据。最大的挑战:成本效益高、大批量生产。关键词:工艺误差,MEMS,光学MEMS,故障分析,MEMS开关,封装开裂,故障机制,可靠性,蠕变,寿命预测。1.简介 在开发先进的MEMS封装时,必须注意和理解以下几点:MEMS器件和MEMS封装的基础设施尚未完善;MEMS封装专业知识并不普遍;MEMS封装是独一无二的和定制的;MEMS通用封装平台技术尚不可用;MEMS器件需要密封;某些MEMS器件甚至需要真空封装;采用硅通孔(TSV)的垂直电馈通成本仍然太高。封装经常被称为“MEMS制造的致命弱点”,是MEMS商业化过程中的一个关键瓶颈。除了少数完全商业化的产品(即气囊触发器、喷墨打印头、压力传感器和一些医疗设备)外,封装是成本的最大单一因素,也是小型化潜力的主要限制因素 [1]。除非完全封装,否则 MEMS 产品是不完整的。目前,封装是导致 MEMS 产品开发时间长和成本高的主要技术障碍之一。封装涉及将:(a) 各种组成部分的大量设计几何形状整合在一起;(b) 连接不同的材料;(c) 提供所需的输入/输出连接,以及 (d) 优化所有这些以获得性能、成本和可靠性。
I. 引言为了满足未来高频电子器件的需求,开发新的技术方法十分必要。在集成方面,主要要求是能够制造复杂的二维和三维微型结构以及混合电介质材料和金属。LTCC(低温共烧陶瓷)[1] 是一种可行的方法。它允许使用低温烧制陶瓷材料和高电导率金属(金、银)。但该技术存在一些局限性:用 LTCC 制造的组件是通过堆叠单条带制成的,因此限制了可实现的几何形状(2.5-D 配置而不是真正的 3-D)。盲孔、沟槽或金属壁不易制作(即使提出了接近的解决方案,例如用过孔栅栏代替金属壁)。此外,混合电介质材料极其困难。立体光刻技术(SL)在特定约束下实现了这一目标。后者包括制造复杂的 3D 组件 [2-4]。到目前为止,该技术基于一种电介质制造,尚无法在单个制造步骤中将金属和电介质材料组合在一起。喷墨打印技术的最新进展使得在一步制造中实现复杂的金属电介质结构 [5-7]。使用这种方法,我们旨在制造创新的高频元件,以获得紧凑性、性能和设计灵活性。我们必须面对的挑战之一是优化一种可以在低温(~900°C)下固化的电介质墨水,从而与银纳米颗粒墨水等高电导率金属墨水兼容。在此背景下,本文介绍了两种基于陶瓷的添加剂技术:(1)喷墨打印方法,首先对基于银纳米颗粒和低温烧制陶瓷材料墨水的多材料和多层组件进行打印测试。(2)一种专用于 RF 组件制造的基于陶瓷的 SL 技术。如图所示,喷墨打印和 SL 技术都是未来 RF 组件的替代技术的候选。II。喷墨技术 A. 喷墨打印原理 该技术基于不同材料薄层的叠加以构建 2D 或 3D 组件,使用多喷嘴压电打印头在基板上输送精确体积的墨滴(几 pL)(图 1)。