人类的大脑可以通过动态变化的环境不断地获取和学习新技能和知识,而不会忘记以前学习的信息。这样的能力可以选择性地将一些重要且最近看到的信息转移到大脑的持续知识区域。受到这种直觉的启发,我们提出了一种基于内存的新方法,用于持续学习中的图像重建和重构,由临时和不断发展的记忆组成,并具有两种不同的存储策略,并涉及临时和永久记忆。临时内存旨在保留最新信息,而不断发展的内存可以动态增加其功能,以保留永久的知识信息。这是通过提出的内存扩展机制来实现的,该机构有选择地将这些数据样本从临时存储器转移到根据信息新颖性标准在演变的存储器中删除的新群集。这种机制促进了进化记忆中群集之间的知识多样性,从而通过使用紧凑的mem-ory容量来捕获更多多样化的信息。此外,我们提出了一种两步优化策略,用于培训变分自动编码器(VAE)以实现生成和表示学习任务,该策略使用两个优化路径分别更新了生成器和推理模型。这种方法导致了一代和重建性能之间的取舍。源代码和补充材料(SM)可在https://github.com/dtuzi123/demc上找到。我们从经验和理论上表明,所提出的方法可以学习有意义的潜在表示,同时从不同领域产生各种图像。
人类的大脑可以通过动态变化的环境不断地获取和学习新技能和知识,而不会忘记以前学习的信息。这样的能力可以选择性地将一些重要且最近看到的信息转移到大脑的持续知识区域。受到这种直觉的启发,我们提出了一种基于内存的新方法,用于持续学习中的图像重建和重构,由临时和不断发展的记忆组成,并具有两种不同的存储策略,涉及临时和永久记忆。临时内存旨在保留最新信息,而不断发展的内存可以动态增加其功能,以保留永久的知识信息。这是通过提出的内存扩展机械性来实现的,该机构有选择地将这些数据样本从临时存储器转移到根据信息新颖性标准在进化存储器中罚款的新群集。这种机制促进了进化记忆中群集之间的知识多样性,从而通过使用紧凑的mem-ory容量来捕获更多多样化的信息。此外,我们提出了一种两步优化策略,用于训练变分自动编码器(VAE)以实现生成和表示学习任务,该策略使用两个优化路径分别更新了生成器和推理模型。这种方法导致了一代和重建性能之间的取舍。源代码和补充材料(SM)可在https://github.com/dtuzi123/demc上找到。我们从经验和理论上表明,所提出的方法可以学习有意义的潜在表示,同时从不同领域产生各种图像。
最近,人们投入了大量精力来开发用于模拟凝聚相环境中量子力学过程动态的精确方法。这种兴趣主要受到量子信息理论的进步、1,2 对高效太阳能收集和传输的追求、3 以及对具有目标功能的纳米级设备进行优化设计的需求的推动。4 量子相干性在与多原子或凝聚相环境接触的系统动力学中的作用至关重要。由于量子力学相的微妙性质,评估干涉效应及其破坏需要有高精度、完全量子力学的模拟工具。在涉及孤立分子组装体或晶体介质中的自旋、电荷或能量传输的过程中,以及在高斯响应占主导地位的其他情况下,5 与可观测系统耦合的环境可以通过二次自由度很好地近似,从而产生系统浴哈密顿量 6
