代表有效且可持续的反应。从两个霞多丽原型开始,经过遗传修改以抵抗这些疾病,该项目着重于对发表的植物的分析。使用CRISPR/CAS9技术进行了变化,这是植物遗传改善的最有希望的一种。到目前为止获得的结果令人鼓舞:这些植物对病原体的抗药性有显着改善,感染症状显着减轻。遗传分析已经确认了目标基因的精确变化,而没有证据表明效果。这种创新的方法有助于减少化学农药的使用,从而响应更可持续的农业的需求。获得的结果是Edivite S.R.L.是现代葡萄栽培部门的领导者,对生产力,酿酒师的成本以及葡萄酒的整体质量产生了积极影响。
我们使用2D扩散模型引入了多视图祖传采样(MAS),这是一种3D运动生成的方法,这些方法是根据从野外视频中获得的动作进行训练的。因此,MAS为以前探索了3D数据而稀缺且难以收集的机会为令人兴奋和多样化的运动领域打开了机会。MAS通过同时降低多个2D运动序列来起作用,代表了同一3D运动的不同视图。它通过将单个世代组合到统一的3D序列中,并将其投影回原始视图,从而确保每个扩散步骤中所有视图的共识。我们在2D姿势数据上展示了MAS,从描述了演习篮球运动的视频中获取的数据,节奏的体操在带有球设备的节奏和赛马。在这些域中的每个域中,3D运动捕获都很艰难,但是,MAS生成了多样化和现实的3D序列。不喜欢分数蒸馏方法,该方法通过反复应用小固定来优化每个样品,我们的方法使用了为扩散框架构建的采样过程。正如我们所证明的那样,MAS避免了常见的措施,例如室外采样和模式折叠。https://guytevet.github.io/mas-page/
无分类器指导(CFG)已广泛用于文本到图像扩散模型中,其中引入了CFG量表以控制整个图像空间的文本指导强度。但是,我们认为全球CFG量表会导致空间不一致,这是不同的脱节优势和次优的图像质量。为了解决这个问题,我们提出了一种新颖的方法,即语义意识的无分类器指导(S-CFG),以自定义文本到图像扩散模型中不同语义单元的指导学位。具体来说,我们首先设计了一种训练 - 免费的语义分割方法,将潜在图像分配到每个Denoising步骤中相对独立的语义区域。尤其是,将U-NET主链中的跨意义图被重新归一化,以将每个贴片分配给相应的令牌,而自我注意力图则用于完成语义区域。然后,为了平衡各种语义单元的扩增,我们会自适应地调整各个不同区域的CFG尺度,以将文本指导学度重新确定为统一水平。最后,广泛的实验证明了S-CFG优于原始CFG策略在各种文本到图像扩散模型上的优越性,而无需任何额外的培训成本。我们的代码可在https://github.com/smilesdzgk/s-cfg上找到。
为了自主驾驶模拟,早期尝试[8,32,35]部署游戏引擎来渲染图像。它不仅需要耗时的过程来重建虚拟场景,而且还需要以低现实主义的形式产生结果。,用于新型视图Synthesis(NVS)的神经渲染技术,例如神经辐射场(NERF)[21]和3D高斯分裂(3DGS)[14],用于同步,以使照片现实主义的街道视图进行同步。当前的研究[4、10、20、23、28、39、43、47、48、51、59]主要是街道视图合成中面临的两个挑战:无界场景的重建和染色体对象的建模。尽管已经取得了令人兴奋的进度,但在现有作品中尚未很好地探索评估重建质量的关键问题。众所周知,理想的场景仿真系统应具有高质量的自由视线渲染的能力。目前的作品通常采用从vehicle捕获而在训练阶段却看不见的观点(例如图。1),同时忽略了偏离训练观点的小说观点(例如图。1)。处理这些新颖的观点时,呈现质量的降低明显降低,对现有作品的模糊和伪像,如图1。此问题归因于车辆收集的图像的固有约束视图。训练图像通常沿着车辆的行驶方向捕获,并以车辆的车道为中心。由于车辆的快速行驶速度,框架之间的超偏度有限,因此不允许对现场中的物体进行全面的多视觉观察。因此,可以从稀疏视图中将自动驾驶的街道视图综合任务理解为重建问题。
我们提出了Vidim,这是一个视频间隔的生成模型,该模型在启动和最终框架下创建了简短的视频。为了实现高保真度并在输入数据中产生了看不见的信息,Vidim使用级联的分化模型首先以低分辨率生成目标视频,然后在低分辨率生成的视频上生成高分辨率视频。我们将视频插补的先前最新方法归纳为先前的最新方法,并在大多数设置中演示了这种作品如何在基础运动是复杂,非线性或模棱两可的情况下失败,而Vidim可以轻松处理此类情况。我们还展示了如何在开始和最终框架上进行无分类器指导,并在原始高分辨率框架上调节超级分辨率模型,而没有其他参数可以解锁高保真性结果。vidim可以从共同降低所有要生成的框架,每个扩散模型都需要少于十亿个pa-rameters来产生引人注目的结果,并且仍然可以在较大的参数计数下享有可扩展性和提高质量。请在vidim- Interpolation.github.io上查看我们的项目页面。
文本对图像(T2I)生成模型最近成为一种强大的工具,可以创建照片现实的图像并引起多种应用。然而,将T2i模型的有效整合到基本图像分类任务中仍然是一个悬而未决的问题。促进图像锁骨表现的一种普遍的策略是通过使用T2I模型生成的合成图像来增强训练集。在这项研究中,我们仔细检查了当前发电和常规数据增强技术的缺点。我们的分析表明,这些方法努力产生既忠实的(就前景对象)而且针对领域概念的多样化(在背景上下文中)。为了应对这一挑战,我们引入了一种创新的类数据增强方法,称为diff-mix 1,该方法通过在类之间执行图像翻译来丰富数据集。我们的经验结果是,DIFF-MIX在信仰和多样性之间取得了更好的平衡,从而导致各种图像分类场景之间的性能显着提高,包括域名数据集的少量,常规和长尾分类。
虽然扩散模型已显着提高了图像生成的质量,但它们在这些图像中准确且相干渲染文本的能力仍然是一个重大挑战。场景文本生成的常规基于扩散的方法通常受到对中间布局输出的依赖的限制。这种依赖性通常会导致文本样式和字体的多样性限制,这是布局生成阶段的确定性质所引起的固有限制。为了应对这些挑战,本文介绍了SceneTeTgen,这是一种基于新颖的扩散模型,专门设计用于规避预定义布局阶段的需求。这样做,场景 - 文本促进了文本的更自然和多样化的代表。SceneTextGen的新颖性在于其三个关键组成部分的整体:一个字符级编码器,用于捕获详细的印刷属性,并与字符级实例分割模型和Word-
在数据科学和机器学习的不断发展的景观中,时间序列建模的领域已成为一个重要且挑战性的研究领域。时间序列数据及其独特的时间依赖性和顺序模式,在金融,医疗保健和气候科学等各个领域中找到了应用[1,2,3]。时间序列的准确建模对于创建强大的模型和理解复杂系统至关重要。建模时间序列的一种方法是通过生成模型[4],该模型在异常检测[5]和数据增强[6]中具有实际应用。在本文中,我们提出了一种基于时间序列生成和建模的神经SDE的新颖方法。尤其是,我们旨在创建一个可以利用默顿模型[3]作为跳跃框架的模型,该模型可以考虑实际市场的跳跃。归一化流是具有易生化密度估计的生成模型家族。主要思想是通过组成几个函数f i将初始复杂的数据分散分散转换为一个简单的想法。有一些
摘要我们提出了一种新的多模式面部图像生成方法,该方法将文本提示和视觉输入(例如语义掩码或涂鸦图)转换为照片真实的面部图像。为此,我们通过使用DM中的多模式特征在预训练的GAN的潜在空间中使用多模式特征来结合一般的对抗网络(GAN)和扩散模型(DMS)的优势。我们提供了一个简单的映射和一个样式调制网络,可将两个模型链接起来,并在特征地图和注意力图中将有意义的表示形式转换为潜在代码。使用gan inversion,估计的潜在代码可用于生成2D或3D感知的面部图像。我们进一步提出了一种多步训练策略,该策略将文本和结构代表反映到生成的图像中。我们提出的网络生成了现实的2D,多视图和风格化的面部图像,这些图像与输入很好。我们通过使用预训练的2D和3D GAN来验证我们的方法,我们的结果表现优于现有方法。我们的项目页面可在https://github.com/1211SH/diffusion-driven_gan-inversion/。
使用扩散模型进行图像修复通常使用预条件模型(即针对绘画任务进行微调的图像条件模型)或后条件模型(即在推理时重新用于绘画任务的非条件模型)。预条件模型在推理时很快,但训练成本极高。后条件模型不需要任何训练,但在推理过程中很慢,需要多次前向和后向传递才能收敛到理想的解决方案。在这里,我们推导出一种不需要昂贵训练但推理速度很快的方法。为了解决昂贵的推理计算时间,我们在潜在空间而不是图像空间上执行前向-后向融合步骤。这是通过扩散过程中新提出的传播模块解决的。在多个领域进行的实验表明,我们的方法达到或改善了状态
