本研究重点介绍了铁矿石在新型高能量密度化学链固定床反应器中的应用,该反应器可用于储能和备用电源。该反应器设计用于对大型铁填料床进行缓慢扩散控制氧化,从而提供加热高压气流所需的能量,同时避免出现较大的温度分布和热点。进行了热重试验,以评估铁矿石在反应器条件下作为氧载体的性能,即在颗粒周围极低的 O 2 浓度和较长的反应时间内进行氧化。使用 dp 50 = 4 – 150 μ m 固体分析了粒度对反应性和最大转化率的影响。随着粒度减小,观察到转化率更高,在 980 ◦ C 下 dp 50 = 4 μ m 固体的快速氧化阶段结束时转化率高达 93%。在预期的反应器条件下,经过 30 次以上的氧化还原循环,确认了细小材料的可逆性能。这些测试表明,细颗粒是最大化反应堆能量存储密度的首选。进一步的分析证明了扩散控制氧化还原细铁矿石超过 100 分钟的可行性,从而表明它是所研究反应堆的有前途的候选材料。
ODIN 的 EYE II 有助于进一步发展由 EDIDP 发起的欧洲太空导弹预警 (SBMEW) 架构。目标系统涉及及时警告、技术情报、针对弹道、高超音速和反卫星 (ASAT) 威胁的导弹防御系统以及扩散控制。该项目将利用和整合欧盟成员国实体的协作努力,开发共同的 SBMEW 能力,以应对当前和未来的安全威胁。相关 PESCO 项目:利用太空战区监视进行及时警告和拦截 (TWISTER)
本文报道了通过相场模拟解决材料科学悬而未决的问题的最新突破。它们涉及增材制造中的凝固结构形成、贝氏体转变过程中的碳重新分布以及高温合金高温蠕变过程中的损伤开始。第一个例子涉及凝固过程中外延生长和成核之间的平衡。第二个例子涉及贝氏体转变中扩散控制和块状转变占主导地位的争议。第三个例子涉及高温合金中的定向粗化(筏化),这是一种扩散控制的相变:沉淀物相干性的丧失标志着与晶格旋转和拓扑反转相关的损伤的开始。本文根据需要回顾了相场法的技术细节,并讨论了该方法的局限性。
多层片剂结合了两种或多种活性药物成分,以提高治疗效果或实现特定的药物释放曲线。在多层片剂中,可以结合两种或多种活性药物成分,其中一层或一种药物可用于立即释放,而另一层药物可用于持续释放药物,即一层是负荷剂量,另一层可以是维持剂量。多层片剂可以帮助克服药物相互作用和与扩散控制基质装置相关的非线性缺点,提供更大的表面积并增加药物随时间的释放速率。这篇评论文章讨论了多层片剂制备所涉及的不同技术以及对多层片剂的研究。
评估电极反应的过程(吸附或扩散控制)。使用CV技术对FEOMCPE的GU和DA的扫描速率效应进行了质疑。图6a以50 mv/s的扫描速率在FeOMCPE的CV处登出GU。在GU中,随着扫描速率的增加,峰值电流伪装增加,潜在的可忽略不计向正面的转移。电势移位主要是由于电极表面上吸附层的发展。扫描速率与峰电势之间绘制的图(图6B)和IPA = 0.5606+1.185ph(R 2 = 0.9804)是线性回归方程。因此,该结果表明GU的电子传递过程受吸附控制,并且对数扫描速率与对数峰值电流的图表如图6C所示。结果具有良好的线性,相关系数值(R 2),被发现为0.999。
光生电荷产生范围很宽且可调,[4] 而且载流子迁移率高,扩散长度可达几微米。[5–7] 在任何光收集装置中,合适的接触对于有效收集光生电荷并将其输送到外部电路都至关重要。接触负责提供内在不对称性,以产生提取光生载流子的驱动力;[8] 这种内在不对称性可以通过动力学选择性(扩散控制)或电极之间的能量失配(漂移控制)来建立。一般的薄膜太阳能电池由活性层、夹在空穴提取阳极接触和电子提取阴极接触之间组成。在光照下,活性层内产生的电荷载流子将漂移扩散到接触处,并通过内在不对称性被提取,从而产生净光电流。有机太阳能电池的特点是载流子迁移率低、扩散长度短,因此需要在活性层上建立强大的内建电场以提高电荷提取率并避免复合。[9–11] 该电场由内建电位V bi (或接触电位) 引起,该电位源于阳极和阴极之间的功函数差异,由于有机半导体的介电常数相对较低,因此基本上不受屏蔽。相反,在钙钛矿太阳能电池中,载流子扩散长度为几微米,在没有电场的情况下,光生电荷应该能够毫不费力地穿过 200–500 纳米的活性层而不会复合。因此,只要能确保接触处的动力学选择性[12],电荷收集预计将由扩散控制[8,13],人们正在沿着这个思路达成共识。通过在电极和活性层之间采用单独的电荷传输层 (CTL) 来实现动力学选择性,从而形成 n–i–p 或 p–i–n 型器件架构,其中阳极处为空穴传输层 (HTL,p 层),阴极处为电子传输层 (ETL,n 层)。在理想情况下,这些层能够传导多数载流子,同时防止少数载流子的提取,从而为扩散驱动的电荷收集创建优先方向。在这种电荷提取要求的框架内,对于内置电位的确切作用以及负责电荷提取的驱动力的确切性质仍然存在一些猜测。
教学大纲: 热力学:第一定律、第二定律、熵、热机、循环过程、熵平衡标准、第一定律与第二定律的结合;麦克斯韦关系、吉布斯-亥姆霍兹方程、热膨胀系数和压缩系数;第三定律:赫斯定律、基尔霍夫定律;相平衡:克劳修斯-克拉珀龙方程、固液/气相-凝聚相平衡、逸度;溶液热力学:拉乌尔定律、亨利定律、吉布斯-杜恒方程、构型熵、常规溶液、过剩函数、点缺陷热力学;自由能:相图评估、吉布斯相律、杠杆法则;冶金反应热力学:埃林汉姆图、优势区图;动力学:动力学定律、反应速率理论、晶粒生长动力学、沉淀物成核和生长动力学、扩散控制生长的概念和建模。
图 2. 锂枝晶生长的机制。(a)扩散控制机制示意图和指示锂枝晶生长开始的 Sand 时间。经许可转载。[24] 版权所有 1999,Elsevier。(b)电沉积过程中锂生长的实验和理论解释。经许可转载。[29] 版权所有 2016,英国皇家化学学会。(c)迄今为止观察到的三种不同的锂沉积模式。经许可转载。[38] 版权所有 2017,Elsevier。(d)成核和生长初始阶段的锂电镀行为方式。经许可转载。[40] 版权所有 2013,IOP Publishing。(e)在带有 2 μm 宽金条图案的 Cu 基底上锂电镀的 SEM 图像。经许可转载。[42] 版权所有 2016,Springer Nature。 (f)LiF 和 Li 2 CO 3 两种常见 SEI 成分的表面能理论计算结果。经许可转载。[45] 版权所有 2021,美国化学学会。
质量作用定律、速率和平衡 速率常数和反应级数 速率定律和反应机理(零级、一级、二级反应和分数级) 碰撞理论、过渡态理论和阿伦尼乌斯方程 稳态近似 测量反应动力学和确定速率常数的方法,动力学机制建模 酶动力学(米氏动力学、抑制、变构酶;代谢中的酶反应) 影响反应速率的因素(反应的温度依赖性和活化参数、粘度和分子动力学、反应的扩散控制) 复杂反应的动力学分析(瞬态和反应序列研究简介;电子转移和自由基反应动力学;聚合动力学) 生物分子反应动力学和分子药理学简介(蛋白质 - 配体结合和交换动力学;结合位点、单位点和多个独立位点模型、与膜受体结合、降维)