摘要 — 我们介绍了一种 SOI 波导耦合锗光电二极管,它在 2 V 反向偏压下具有非常高的 OE -3 dB 带宽 ≥ 110 GHz。这种性能是通过一种新颖的结构实现的,即将锗夹在两个原位掺杂的硅区域之间。这种制造方法可以避免将离子注入锗,这无疑有利于带宽,因为少数载流子扩散效应受到强烈抑制。在 1550 nm (-2 V) 时实现了 >0.6 A/W 的响应度,而该器件的暗电流约为 300 nA (-2 V)。据我们所知,这是最先进的锗光电探测器,具有带宽、最先进的响应度以及中等暗电流。我们证明,这种新型光电二极管可以高产量制造。
共轭聚合物的融化具有溶液加工的一种环保替代方案的潜力,但是分子属性和潜在控制策略的具体作用仍然在很大程度上没有探索。在这里,两个系列的剖面聚(3-己基噻吩)(p3HT)表明,链长的效果在很大程度上取决于链缺损的量(RegieRotality)。超出链折叠过渡,增加分子量M W对于90%的防治性P3HT,导致结晶动力学和降低的热稳定性的结晶质量较慢,而95%的RendOreTorgularity使结晶几乎对链长不敏感。融化的自种可用于操纵P3HT的结晶温度,但是当结晶被阻碍最大时,最有效。更长,更有缺陷的链。p3HT自种由最初存在的微晶的热稳定性主导,而不是仅取决于m w的扩散效应。总体而言,结果强调了控制和报告剖面和分子量的关键需求。
许多生物现象的数学模型,例如疾病的传播,都是基于相互作用的细胞群密度的反应扩散方程。我们从适当重新缩放的动力学玻尔兹曼方程系统,一致地推导出反应扩散方程,用于在宿主介质中相互作用的细胞群的分布函数。我们首先表明,动力学方程的经典扩散极限只会导致线性扩散项。然后,我们展示了可能的策略,以便从动力学层面获得具有非线性扩散和交叉扩散效应的宏观系统。从动力学描述中推导的优点是将反应和扩散系数与相互作用的微观参数联系起来。我们介绍了我们的方法在研究叶子表面不同细菌种群进化中的应用。通过分析方法和数值工具研究了相关宏观系统的图灵不稳定性特性,特别强调了二维空间域中不同参数的模式形成。
情境犯罪预防工作(例如重点警务计划)没有解决犯罪的根本原因,因此经常被批评为无效,因为人们认为这些工作只是将犯罪和罪犯转移到其他地方。1 这种效应被称为犯罪转移,可能表现为多种形式,包括:空间转移(将犯罪转移到其他地点);时间转移(转移到其他时间);目标转移(转移到较软或较不戒备的目标);作案手法转移(转移到其他策略);犯罪转移(转移到其他类型的犯罪);以及犯罪者转移(转移到其他/新罪犯)。2 然而,对一般犯罪预防计划以及警察主导的犯罪减少工作进行严格评估的系统审查发现,转移通常不会发生。3 而且,即使发生,转移的范围也是有限的(即永远不会“一对一”)。转移的反面——犯罪控制效益的扩散,即预防行动未直接针对的地点的犯罪意外减少——似乎是犯罪预防和重点警务更有可能的结果。尤其是,对有针对性的威慑评估的系统审查发现,几乎没有证据表明这些计划的实施导致了位移,而有一些扩散效应。4
1俄罗斯科学学院的机械学研究所,俄罗斯,俄罗斯联合会2珀斯州国家研究大学,珀普,俄罗斯联邦,俄罗斯联合会麻木调查了由甲烷(35%),乙烷(35%)和丁烷(35%)和丁烷(30%)的混合物的出现和非线性对流,在水平的环境中在地热梯度的影响下。该区域具有实体的固体边界,并由两个水平层形成,其高度相关为1:3。这些层的特征是孔隙率相等,但渗透性不同。选择了孔隙率和渗透率的大小,接近砂岩,砂岩或石灰石的真实介质的值。分析的混合物的成分属于石油和天然气田土壤中存在的主要化合物。因此,所述的构型是碳氢化合物沉积的模型。情况,相反,下层比上层更可渗透。在整个计算区域中,多孔环境的其余参数被认为是相同的。考虑到热量扩散效应,该问题在DARSI -Bussisles模型的框架内解决。追踪了局部特征的暂时演变以及新兴过程的结构和混合物组成部分的分布。在更较小的高度层中,显示了对流的“局部”性质。如果渗透性更大,则在厚层中观察到类似的涡流位移。与此层中的高度和渗透率的组合结合在一起,流动出现了,在对流的过程中,它开始渗透到较不渗透性的层中,但是形成涡流的中心明显转移到更渗透性的层。在这种情况下,对流本质上是“大的”。
可以使用细胞外电位(例如局部场上的电池或电脑电图)来测量脑组织中的抽象电现象。这些信号的解释取决于细胞外培养基的电结构和特性,但这些电特性的测量仍在争论中。一些测量指向细胞外培养基纯电阻的模型,因此诸如电导率和介电常数之类的参数应独立于频率。其他测量值指向这些参数的明显频率依赖性,其缩放定律与电容或扩散效应一致。但是,这些实验对应于不同的预先处理,目前尚不清楚如何正确比较它们。在这里,我们第一次提供了使用在各种制剂中相同的设置,从原代细胞培养物到急性脑切片的阻抗测量(在1-10 kHz频率范围内),以及与无生物学物质的人工脑脊髓流动的相似测量的比较。测量结果表明,当电流流过细胞膜时,细胞内电极和细胞外电极之间的宏观阻抗的频率依赖性显着,并且不能被电阻介质的模型捕获。将均值字段模型拟合到数据上表明,这种频率依赖性可以通过与膜周围的debye层相关的离子扩散来解释。我们得出的结论是,神经元膜及其离子环境会引起强大的电阻率偏差,应考虑到正确解释神经元产生的细胞外电位。