自适应网状修复基于基本要素:后验估计。在中子中,后验错误控制是一个正在进行的研究主题。AMR。在[16,第3.3节]中,作者解决了A后验估计中使用的规律性假设的问题。在[21,22,25]中,A后验估计值基于双重加权残差方法,其中保证的估计器涉及确切的伴随溶液。在[17]中,他们设计了一个可靠的估计,该估计依赖于双重问题的定义,并突出了由于这个双重问题缺乏稳定性而缺乏效率。严格的估计值不需要过剩的规律性以及适应性网格重新确定策略,以解决运输方程式上的源问题[9]。在这项工作之后,[10]中已经解决了有关特征值问题的理论方面。在这些论文中,作者设计了一种数值策略,该策略依赖于精确控制的操作员评估,例如在[9]中用于解决源问题。在反应堆核心尺度上,使用简化的模型在核工业中很常见。准确地说,简化的模型可以是中子分歧模型或简化的传输模型。在[7]中,我们对中子差异方程的混合有限元离散量进行了严格的后验误差估计,并提出了一种自适应网格重新填充策略,以保留Carte-sian结构。在[13]中执行了这种方法对临界问题的第一个应用,尽管具有次级估计器。关于工业环境和特定的数字模拟,我们的方法是在Apollo3®代码[23]中开发混合有限元求解器[4]的一部分。
高维分数阶反应扩散方程在生物学、化学和物理学领域有着广泛的应用,并表现出一系列丰富的现象。虽然经典算法在空间维度上具有指数复杂度,但量子计算机可以产生仅具有多项式复杂度的量子态来编码解决方案,前提是存在合适的输入访问。在这项工作中,我们研究了具有周期性边界条件的线性和非线性分数阶反应扩散方程的高效量子算法。对于线性方程,我们分析和比较了各种方法的复杂性,包括二阶 Trotter 公式、时间推进法和截断 Dyson 级数法。我们还提出了一种新算法,该算法将汉密尔顿模拟技术与交互图像形式相结合,从而在空间维度上实现最佳缩放。对于非线性方程,我们采用 Carleman 线性化方法,并提出了一种适用于分数阶反应扩散方程空间离散化产生的密集矩阵的块编码版本。