摘要:由于引人入胜的相变现象,二氧化钒(VO 2)中绝缘和金属相的稳定共存引起了重大研究的兴趣。但是,在VO 2的不同阶段,电荷载体的时间行为仍然难以捉摸。在此,我们采用近场光学纳米镜检查来捕获弯曲VO 2纳米梁中的纳米级交替相域。通过在不同阶段进行瞬态测量,我们观察到在VO 2的金属相中延长的载体重组寿命,并伴随着加速的扩散过程。我们的发现揭示了VO 2纳米梁中的纳米级载体动力学,提供了洞察力,可以促进对相变材料的进一步研究及其在感应和微电机械设备中的潜在应用。关键字:二氧化钒,应变工程,载体动力学,相变,S-SNOM■简介
摘要。在本文中,我们引入了一个新的生成模型,即无自动编码器(DolfIN)的扩散布局变压器,该变压器在现有方法上可显着提高建模能力和透明度。Dolfin采用基于变压器的扩散过程来建模布局生成。除了有效的双向(非因果关节)序列表示外,我们还设计了一种自回归扩散模型(Dolfin-ar),该模型尤其擅长捕获邻居对象的丰富局部语义相关性,例如对齐,大小和重叠。在对标准的无条件布局生成基准进行评估时,Dolfin尤其优于各种指标的先前方法,例如FID,对齐,重叠,Maxiou和DocSim分数。此外,Dolfin的应用程序不仅仅是布局生成,因此它适用于对其他类型的几何结构(例如线段)进行建模。我们的实验既提出了定性和定量结果,以证明Dolfin的优势。
市场微观结构介绍:电子市场,市场参与者,交易类型,交易成本,限制订单簿,衡量流动性,资产价格和回报额,额外时间,到达时间,延迟时间和壁虱规模,市场碎片,每日量和挥发性和旋转率以及盘内活动的随机性模型和随机性的插入式插入式载体,动态计划的动态效果分析,动态编写,动态编写,动态编写,动态效果,动态效果,动态式,动态性,动态性,动态式,启动性,动态性,动态性,动态性,并介绍了动态的,进行扩散过程的随机控制,用于计数过程的随机控制,一些数值方法的介绍算法交易:无罚款的清算,具有临时和永久价格影响的清算,仅限制订单的清算,限制和市场订单的清算,使用algorithmic divbase divbase divabase
扩散模型通过学习扭转扩散过程来将噪声转换为新的数据实例,已成为当代生成建模的基石。在这项工作中,我们在离散时间内开发了基于流行的基于扩散的采样器(即概率流ode Sampler)的非反应收敛理论,假设访问(Stein)得分函数的ℓ2-2-准确估计值。对于R d中的分布,我们证明D/ε迭代(模拟一些对数和低阶项)足以将目标分布近似于ε总变化距离。这是为概率流ode采样器建立几乎线性维依赖性的第一个结果。仅对目标数据分布的最小假设(例如,没有施加平滑度假设),我们的结果还表征了ℓ2分数估计误差如何影响数据生成过程的质量。与先前的作品相反,我们的理论是基于基本而多功能的非反应方法而开发的,而无需求助于SDE和ODE工具箱。
我们将从真实图像分布 q ( · ) 中 (近似) 采样的任务视为一系列去噪问题。更准确地说,给定一个样本 x 0 ∼ q ( · ) ,扩散过程逐步添加噪声以生成样本 x 1 , ..., x T 进行 T 步,其中 x t +1 = a t x t + b t ε t ,并且 ε t 从高斯分布 2 中采样。请注意,因此,当 T →∞ 时,样本 x T 开始遵循标准正态分布 N (0 , I )。现在,如果我们逆转此过程,并且能够在给定 x t +1 的情况下对 x t 进行采样,即对 x t +1 进行去噪,我们最终可以从 q ( · ) 生成新样本。这只需从 x T ∼N (0 , I ) 开始(这对应于 T 足够大),然后对这些样本进行 T 步迭代去噪,即可生成新图像 ˜ x ∼ q ( · )。
当前对电解铝阴极碳钠渗透的研究主要是测量阴极膨胀曲线,主要显示宏观特征。然而,显微镜结构通常是不流失的。作为多孔介质,阴极碳块的扩散性能与其内部孔结构紧密相关。将阴极碳块视为多相复合材料,本研究从微结构的角度研究了钠扩散过程。开发了一个预测钠扩散的模型,考虑了孔隙率,温度,结合效应,电流降低和分子比例等因素。在Python中实现了一个随机聚合模型,并将其导入到有限元软件中,以使用Fick的第二定律模拟钠扩散。结果表明,孔隙率提高,温度较高,结合效应降低,电流密度增加和较高的分子比增强了钠浸润,降低了扩散耐药性并增加了扩散系数。模拟与实验结果很好地对齐,证实了其准确性和可靠性。
随机 dropout 已成为人工神经网络 (ANN) 中的标准正则化技术,但目前尚不清楚生物神经网络 (BioNN) 中是否存在类似的机制。如果存在,其结构很可能经过数亿年的进化而得到优化,这可能表明大规模 ANN 中存在新的 dropout 策略。我们认为大脑血清素纤维 (轴突) 满足一些预期标准,因为它们无处不在、结构随机,并且能够在个体的整个生命周期中生长。由于血清素纤维的轨迹可以建模为异常扩散过程的路径,因此在这项概念验证研究中,我们研究了一种基于超扩散分数布朗运动 (FBM) 的 dropout 算法。结果表明,血清素纤维可能在脑组织中实现类似 dropout 的机制,从而支持神经可塑性。他们还提出,血清素纤维的结构和动力学的数学理论有助于设计 ANN 中的 dropout 算法。
摘要。扩散概率模型(DPM)已成为生成建模的一种有前途的技术。DPM的成功取决于两种成分:扩散过程的时间逆转和分数匹配。大多数现有的作品隐含地假设分数匹配接近完美,而此假设值得怀疑。鉴于可能无法保证的得分匹配,我们提出了一个新标准 - DPM设计中向后抽样的收缩,从而导致了一种新型的承包DPMS(CDPMS)。关键见解是向后过程中的收缩可以缩小分数匹配错误和离散错误。因此,我们提出的CDPM对两个误差源都是可靠的。为了实际使用,我们表明CDPM可以通过简单的转换来利用经过验证的DPM,并且不需要重新训练。我们通过对合成1-DIM示例,瑞士卷,MNIST,CIFAR-10 32×32和AFHQ 64×64数据集的实验来证实我们的方法。值得注意的是,CDPM在所有已知的基于SDE的DPM中显示出最佳性能。
摘要。这项研究深入研究了用于用于胸部CT扫描的潜在扩散模型的合成肺结节的表征。我们的实验涉及通过二进制掩码进行定位和各种结节属性引导扩散过程。特别是,掩码指示结节在边界框的形状中的近似位置,而其他标量属性则在嵌入向量中编码。扩散模型在2D中运行,在推理过程中产生单个合成CT切片。该体系结构包括一个VQ-VAE编码器,以在图像和潜在空间之间进行转换,以及负责DeNoising过程的U-NET。我们的主要目标是评估合成图像的质量,这是条件属性的函数。我们讨论可能的偏见以及模型是否充分定位并表征合成结节。我们对拟议方法的能力和局限性的发现可能是涉及有限数据集的下游任务,因为医学成像通常是这种情况。
我们提出了指示插道,这是一个将计算机视觉任务与Human指令保持一致的统一且通用的框架。与现有的方法相比,将先验知识整合并预先定义了每个视觉任务的输出空间(例如,构想和坐标),我们将各种视觉任务施加到人类直觉的图像操纵程序中,其输出空间是一个灵活的交互式像素空间。具体而言,该模型是建立在扩散过程的基础上的,并经过培训可以根据用户说明进行预测像素,例如将男人的左肩围绕红色或左右涂上蓝色面具。指示示例可以处理各种视觉任务,包括未识别任务(例如分割和关键点)和生成任务(例如编辑和增强)和在新颖数据集中胜过先前的方法。这代表了朝着视觉任务的通才建模界面迈出的坚实一步,在计算机视觉领域中推进了人工通用的intel。