• 地球探测器-12 : 第 0 阶段任务概念 ≤ 4 个;第 A 阶段任务概念 ≤ 2 个;CMIN28 后实施 • 侦察兵-下一步 : 巩固阶段任务概念 ≤ 4 个;CMIN25 后实施 ≤ 2 个 • 发送-2 NG : 第 A/B1 阶段 → 更高分辨率,与第 1 代相同的扫描带 • 发送-3 光学 NG : 第 A/B1 阶段 → 更高分辨率,与第 1 代相同的扫描带
摘要。卫星 NO 2 数据在空气质量研究中的应用日益表明,需要进行具有更高空间和时间分辨率的观测。NO 2 昼夜循环研究、全球郊区观测和排放点源识别是一些重要应用的例子,而这些应用无法在现有仪器提供的分辨率下实现。提高空间分辨率的一种方法是减少检索所需的光谱信息,从而允许使用传统 2-D 探测器的两个维度来记录空间信息。在这项工作中,我们研究了使用 10 个离散波长和成熟的差分光学吸收光谱 (DOAS) 技术来检索 NO 2 斜柱密度 (SCD)。为了测试这个概念,我们使用了来自世界各地不同地区的单个 OMI 和 TROPOMI 1B 级扫描带,这些扫描带既包含清洁区域,也包含严重污染区域。为了离散化数据,我们模拟了一组以 NO 2 吸收截面的各个关键波长为中心的高斯光学滤波器。我们使用 DOAS 算法的简单实现对离散数据进行 SCD 检索,并将结果与相应的 2 级 SCD 产品(即 OMI 的 QA4ECV 和 TROPOMI 业务产品)进行比较。对于 OMI,我们离散波长检索的总体结果与 2 级数据非常吻合(平均差异 < 5 %)。对于 TROPOMI,一致性很好(平均差异 < 11 %),由于其信噪比更高,不确定性较低。这些差异主要可以通过检索图像的差异来解释
该图说明了如何实现这一点。当目标 (A) 首次进入雷达波束 (1) 时,开始记录每个发射脉冲的反向散射回波。随着平台继续向前移动,在目标处于波束内的整个时间内,记录每个脉冲的目标回波。一段时间后,目标离开雷达波束视野 (2) 的点决定了模拟或合成天线 (B) 的长度。远距离目标的波束最宽,照射时间会比近距离物体更长。随着地面距离的增加,波束宽度的扩大,加上目标在波束内的时间增加,相互平衡,从而使整个扫描带的分辨率保持不变。这种在整个成像扫描带上实现均匀、精细的方位角分辨率的方法称为合成孔径
Applanix POS MV ™ 系统是一种 GNSS 辅助惯性导航系统,可提供一整套位置和方向测量。POS MV 于 1996 年投放全球市场,是一种紧密耦合系统,采用 Applanix 独特的惯性辅助实时运动 (IARTK) 技术。POS MV 具有高数据更新率,可提供完整的六自由度位置和方向解决方案。它设计用于多波束声纳系统,可遵守 IHO(国际水文测量局)标准,在所有动态条件下声纳扫描带宽度大于 ± 75 度。POS MV 为用户提供最高精度的海洋应用运动中测量。
该卫星将被发射到 500 公里高空的太阳同步轨道。在轨道上,成像仪采用推扫式概念,在经过目标时按顺序收集范围内所有波长的像素线。推扫式概念与光学设计相结合,每条扫描线可产生高达 70 公里的扫描带宽度,地面采样距离为 49 × 60 米。由于原始高光谱数据立方体很大,并且这对卫星下行链路的功耗有限制,因此必须进行最后的考虑。这可以通过机载图像处理(例如校正、分类、异常检测、特征提取和降维)而不是物理设计本身来显著改善。本文介绍了这种特定成像仪的性能特征,并对光学设计中的配置可能性进行了权衡分析。
该图说明了如何实现这一点。当目标 (A) 首次进入雷达波束 (1) 时,开始记录每个发射脉冲的反向散射回波。随着平台继续向前移动,在目标处于波束内的整个时间内,记录每个脉冲的目标回波。一段时间后,目标离开雷达波束视野 (2) 的点决定了模拟或合成天线 (B) 的长度。远距离目标的波束最宽,照射时间会比近距离物体更长。随着地面距离的增加,波束宽度的扩大,加上目标在波束内的时间增加,相互平衡,从而使整个扫描带的分辨率保持不变。这种在整个成像扫描带上实现均匀、精细的方位角分辨率的方法称为合成孔径
此图说明了如何实现这一点。当目标 (A) 首次进入雷达波束 (1) 时,开始记录每个发射脉冲的反向散射回波。随着平台继续向前移动,在目标处于波束内的整个时间内,记录每个脉冲的目标回波。一段时间后,目标离开雷达波束视野 (2) 的点决定了模拟或合成天线 (B) 的长度。远距离目标的波束最宽,照射时间会比近距离物体更长。波束宽度的扩大,加上地面距离增加时目标在波束内的时间增加,相互平衡,使得整个扫描带的分辨率保持不变。这种在整个成像带上实现均匀、精细方位角分辨率的方法称为合成孔径
该图说明了如何实现这一点。当目标 (A) 首次进入雷达波束 (1) 时,开始记录每个发射脉冲的反向散射回波。随着平台继续向前移动,在目标处于波束内的整个时间内,记录每个脉冲的目标回波。一段时间后,目标离开雷达波束视野 (2) 的点决定了模拟或合成天线 (B) 的长度。远距离目标的波束最宽,照射时间会比近距离物体更长。随着地面距离的增加,波束宽度的扩大,加上目标在波束内的时间增加,相互平衡,从而使整个扫描带的分辨率保持不变。这种在整个成像扫描带上实现均匀、精细的方位角分辨率的方法称为合成孔径
该图说明了如何实现这一点。当目标 (A) 首次进入雷达波束 (1) 时,开始记录每个发射脉冲的反向散射回波。随着平台继续向前移动,在目标处于波束内的整个时间内,记录每个脉冲的目标回波。一段时间后,目标离开雷达波束视野 (2) 的点决定了模拟或合成天线 (B) 的长度。远距离目标的波束最宽,照射时间会比近距离物体更长。随着地面距离的增加,波束宽度的扩大,加上目标在波束内的时间增加,相互平衡,从而使整个扫描带的分辨率保持不变。这种在整个成像扫描带上实现均匀、精细的方位角分辨率的方法称为合成孔径
摘要 本文介绍了纯退相干条件下的三元组和纠缠量子比特的有效量子态断层扫描方案。我们实现了通过相位衰减通道发送的开放系统的动态状态重建方法,该方法提出于:Czerwinski 和 Jamiolkowski Open Syst. Inf. Dyn. 23, 1650019 ( 2016 )。在本文中,我们证明在四个不同时刻测量的两个不同可观测量足以重建三元组的初始密度矩阵,其演化由相位衰减通道给出。此外,我们推广了该方法以确定纠缠量子比特的量子断层扫描标准。最后,我们证明了关于纯退相干条件下的三元组量子态断层扫描所需可观测量数量的两个普遍定理。我们相信动态状态重建方案为量子断层扫描带来了进步和新颖性,因为它们利用了海森堡表示并允许在时间域中定义测量。