为了提高神经网络的电质量干扰识别能力,本文研究了基于深度学习的功率质量识别和分类方法:构建功率质量扰动模型,生成训练集;构建深度神经网络;培训训练设置为深度神经网络培训;验证深度神经网络的性能;结果表明,即使在最严重的20dB噪声条件下,训练集被随机添加20dB-50dB噪声,它也可以达到99%以上的识别,这是一种传统。该方法无法实现。结论:基于最深的学习质量干扰识别和分类方法克服了人工特征的选择步骤的劣势,较差的强大功能,这对更准确,更准确,快速迅速发现功率质量问题的类别是有益的。
摘要 随着发射到太空的卫星数量的增长,依赖传统辐射跟踪的地面设施已达到饱和。因此,自主导航是可持续深空任务的主要支持技术之一。本文解决了利用多个信标独立于地面估计观察者位置的深空光学导航问题。本文推导出利用多个信标的深空导航问题的最小二乘解和解析协方差。视线方向和物体星历表的扰动被纳入协方差公式。然后,阐述了扰动模型、导航解和导航协方差的几何解释。通过测试用例评估了导航精度对信标数量的敏感性,显示了数值解和解析解之间的对应关系。最后,本文展示了利用多个信标与两个最优信标的导航精度的比较。
准确的湍流预测非常昂贵,因为它需要一个限定时间的时间步骤来推进管理方程以解决快速发展的小规模动作。随着各种机器学习(ML)算法的最新开发,有限的时间预测成为减轻计算负担的有希望的选择之一。然而,对小规模动议的可靠预测具有挑战性。在这项研究中,开发了基于生成对抗网络(GAN)的数据驱动的ML框架的预测网络,用于快速预测湍流,使用相对较少的参数,高精度降至最小的湍流。特别是,我们使用直接的数值模拟数据在有限的交货时间内学习了二维(2-D)腐烂的湍流。开发的预测模型可以在有限的交货时间内准确地预测湍流场,最多是Eulerian积分时间尺度的一半,大规模动作保持相当相关。量表分解用于解释可预测性,具体取决于空间量表,并研究了潜在变量在歧视者网络中的作用。GAN在预测小规模的湍流中的良好性能归因于潜在变量的尺度选择和尺度相互作用能力。此外,通过利用预测网络作为替代模型,开发了一个名为ControlNet的控制模型,以识别驱动流量段的时间演变的扰动模型,以优化指定目标函数的方向。