环丙沙星已显示出未成熟动物的承重关节引起关节炎。 来自一项关于儿童环丙沙星使用的随机双盲研究的安全性数据(环丙沙星:n = 335,平均年龄= 6.3岁;比较器:n = 349,平均年龄= 6.2岁;年龄= 1岁;年龄范围= 1至17岁),涉嫌涉嫌与药物相关的临床率(均为7%)(均与连接的临时率)(均为7%)(均为4.2岁)(均为4年)。 4.6%。 分别为1年随访的药物相关关节病的发生率为9.0%和5.7%。 随着时间的流逝,可疑的与药物相关的关节病病例的增加在统计学之间没有统计学意义。 由于可能与关节和/或周围组织有关的不良事件,应在仔细的利益/风险评估后才开始治疗。环丙沙星已显示出未成熟动物的承重关节引起关节炎。来自一项关于儿童环丙沙星使用的随机双盲研究的安全性数据(环丙沙星:n = 335,平均年龄= 6.3岁;比较器:n = 349,平均年龄= 6.2岁;年龄= 1岁;年龄范围= 1至17岁),涉嫌涉嫌与药物相关的临床率(均为7%)(均与连接的临时率)(均为7%)(均为4.2岁)(均为4年)。 4.6%。分别为1年随访的药物相关关节病的发生率为9.0%和5.7%。随着时间的流逝,可疑的与药物相关的关节病病例的增加在统计学之间没有统计学意义。由于可能与关节和/或周围组织有关的不良事件,应在仔细的利益/风险评估后才开始治疗。
所用材料。需求包括提高韧性、减轻重量、提高抗疲劳和腐蚀能力。随着制造商努力提高下一代飞机的性能和效率,材料性能的界限正在不断扩展。铝是面临这些挑战的关键材料之一。铝合金板用于大量航空航天应用,其复杂性和性能要求从简单部件到飞机的主要承重结构不等。第一个了解铝在航空航天工业中潜力的人是作家儒勒·凡尔纳,他在 1865 年的小说《月球之旅》中详细描述了铝火箭。1903 年,莱特兄弟让第一架飞机升空,其中发动机的部件由铝制成。
生物医学应用的材料选择通常基于其本体特性。由于材料的表面特性通常不符合生物相容性,因此采用了两种不同的方法:改性本体材料或涂覆涂层。本体材料的改性包括加入添加剂或使用复合材料来提高生物相容性。这种方法主要用于可生物降解材料的开发 [3]。另一种选择是对材料进行涂层处理。生物医学应用中通常使用不同类型的涂层。这样的例子有体内和体外使用的不同聚合物材料,这些材料涂有亲水涂层 [4],承重金属植入物需要表面涂层来改善其与周围组织的相互作用 [5]。
首次利用选择性激光熔化技术制备了高孔隙率的Fe-35Mn-1Ag可生物降解合金支架。研究了该支架的微观结构、组织形貌、力学性能和降解行为,并与在类似工艺参数下制备的Fe-35Mn支架进行了比较。SLM制备的支架具有发达的孔隙结构和高度的连通性,有助于提高生物相容性。其力学性能非常接近目标人体组织,植入后不会出现应力遮挡。与Fe-35Mn合金相比,Fe-35Mn-1Ag支架的力学性能略高,但降解率提高了30%以上。总体而言,SLM制备的Fe-35Mn-1Ag支架表现出良好的力学性能和改善的降解行为,为可生物降解的承重应用提供了解决方案。
摘要理由化疗诱导的认知障碍(CICI),化学邻磷脂和化学杂志是化学治疗剂影响癌症患者/幸存者的精神功能障碍的常见术语。CICI表现为短期/长期记忆问题和延迟的心理处理,这会干扰一个人的日常活动。了解CICI机制有助于开发可能减轻疾病状况的治疗干预措施。动物模型促进了批判性评估,以阐明基本机制,并构成验证不同治疗假设和策略的组成部分。目标需要对科学文献进行有条理的评估,以了解与化学治疗剂在不同的临床前研究中使用的认知变化。这篇评论主要强调了动物模型,其动物模型是通过各种化学治疗剂单独并结合使用的,其提出的机制导致了认知功能障碍。本综述还指出,健康动物中化学探针的分析,以了解在没有肿瘤和承重肿瘤动物中干预措施的机制,以模仿人类癌症条件,以筛查潜在的候选药物针对Chemobrain。结果在健康和承重肿瘤的动物中证明了由于常用化学治疗剂的大量记忆不足。空间和情感认知障碍,神经营养蛋白的改变,氧化和炎症标志物以及长期增强的变化在不同动物模型中通常会发生变化。结论障碍是癌症化学疗法的严重副作用之一。由于不同趋势改变行为和生化参数的趋势的化学治疗剂机制不同,化学疗法可能会带来明显的风险,从而导致健康和耐肿瘤动物的记忆障碍。
飞机是一种结构复杂,但却是一种非常高效的人造飞行器。飞机通常由机翼、机身、尾翼和控制面等基本部件组成。这些主要部分的承重构件,即承受主要力的构件,称为机身。支架是连接器类型的元件,广泛用作结构支撑,用于承载发动机、机翼和起落架连杆中使用的液压和电线。支架故障可能导致整个结构的灾难性故障。有限元分析研究和实验数据有助于设计人员保护结构免遭灾难性故障。我们的项目考虑使用 I 型支架和 Z 型支架来分析在适当的激励力下可能引起共振响应的应力和固有频率。
当飞机推进机械开始老化时,微小颗粒会从承重表面(如轴承和齿轮)释放到润滑剂中。能够检测和分析这些颗粒对于做出明智的维护决策至关重要。使用此类信息做出的明智决策通常对飞机可用性和安全性产生重大积极影响。军用飞机通常需要在偏远地区(如海上或远离重要实验室支持服务的前沿作战基地)长期飞行。因此,在这种情况下,有必要提供一些增强工具,以快速准确地确定从飞机磁性芯片检测器、屏幕或过滤器中回收的金属磨损碎片的重要性。本文介绍了一些已开始的工作,以增强在偏远地区操作飞机的维护人员可获得的信息。
碳纤维增强聚合物 (CFRP) 在航空航天应用中尤其受关注:与金属不同,CFRP 不会腐蚀,也不易出现疲劳开裂。此外,与其他承重材料相比,碳纤维可显著减轻重量。设计过程中存在许多影响最终 CFRP 强度的因素。一种常见的制造方法涉及铺层工艺,其中各个层板以重复模式以不同角度堆叠;选择某种模式可以充分利用聚合物和纤维在多个方向上的理想特性。层板受一组固化条件的影响,包括温度、湿度和循环时间,这些因素也会影响最终复合材料的强度。固化后,周围的环境条件也会对材料性能产生重大影响;这些条件通常是研究的