有人提议通过重复同质单元细胞来开发超生物材料,用于骨科应用,以解决这些问题(Matassi 等人,2013 年;Van Hooreweder 等人,2017 年)。超生物材料凭借微架构设计结构的优势,展现出独特的机械和生物特性。这一特性使得突破性的患者专用承重植入物设计成为可能:(i)适合外科手术几何形状(Jun 等人,2010 年;Stoor 等人,2017 年),(ii)模仿天然骨的机械特性(Helguero 等人,2017 年;Zhang 等人,2018 年),以及(iii)为自然生物固定提供高表面(Long 等人,2012 年;Schouman 等人,2016 年)。可以合理设计孔隙形状、孔隙大小和孔隙率等单元特征,以实现承载能力(Montazerian 等人,2017 年;Torres Sanchez 等人,2018 年)。定制孔隙率可以降低刚度,以适应骨骼特性,从而增强植入物的功能(Jakus 等人,2018 年;X. Wang 等人,2016 年)。
工程生物材料 (ELM) 是一类新型材料,旨在合成 21 和/或由生物体填充。ELM 有可能降低材料制造中的能源成本,并提供包括自修复和 23 传感在内的新型材料功能。然而,材料制造的能源成本主要来自用于建筑和机器的刚性材料的生产 24。为了大幅减少碳排放,25 ELM 必须能够替代其中一些刚性材料。然而,由活细胞合成的天然材料不够坚硬,无法替代大多数刚性工程材料 27。此外,目前最坚硬的 ELM 中的细胞活力还不足以实现这些材料的潜在可持续性优势。对刚性 ELM 的需求将需要新的方法来增强驻留细胞活力和/或将活细胞与刚性支架相结合 30。在天然材料中,骨骼是一种罕见的刚性材料 31,它由能够保持多年活力的细胞合成和功能化。骨骼有望为克服挑战提供宝贵的经验,以实现用于承重目的的 ELM 所需的活力和 33 机械性能。34
摘要:关键飞机结构是承重构件,是任何飞机的重要组成部分。疲劳载荷、操作条件和环境恶化的影响导致机身的结构完整性需要评估其适航性要求。使用安全寿命的疲劳设计概念,RMAF 采用飞机结构完整性程序 (ASIP) 来监控其关键部件的结构完整性。RMAF 使用飞机关键结构的工程分析概念制作了任务卡。使用了各种计算机辅助工程 (CAE) 方法,对于此分析,使用裂纹扩展预测方法来确定裂纹扩展行为及其在发生任何裂纹时的最终失效点。虽然有六个关键位置,但选择了机翼根部,因为它最有可能出现疲劳失效。讨论的分析方法是裂纹扩展分析和低周疲劳。对于数值方法,使用 NX Nastran 模拟裂纹扩展。裂纹扩展分析的结果通过数值结果进行了验证。结论是,根据疲劳寿命循环,机翼根部结构状态不会受到严重损伤,无论是通孔还是贯穿侧裂纹,其失效时间都约为30至100年。因此,其结构寿命可以延长。研究成果将对延长飞机机翼的结构寿命产生重要影响。
术后ir妄倾向的潜在结构相关性在很大程度上未知。术前脑磁共振成像(MRI)标记的组合分析可以提高我们对妄想的病理生理学的理解。因此,我们旨在确定计划进行大型选修手术的老年患者的不同MRI脑表型,并评估这些表型和术后del妄之间的关系。神经退行性和神经血管的大脑变化的标记是由老年患者的MRI脑扫描确定的(n = 161,平均年龄71,标准偏差5年),其中24(15%)(15%)出现了ir妄。进行了分层群集分析。我们发现了六组不同的MRI脑表型患者。逻辑回归分析表明,在具有多重承重病理学的个体(n = 15(9%),优势比(95%的补充间隔)中,发展术后del妄的几率更高:3.8(1.1-13.0))。总而言之,这些结果表明,不同的MRI脑表型与大型选修手术后发生ir妄的风险不同。MRI脑表型可以帮助改善对术后del妄倾向的结构相关性的理解。
摘要:商业航空的发展受到提高效率从而降低排放的需求的推动。全电动飞机提供了一种消除直接燃料燃烧排放的途径,但其发展受到当前电池能量和功率密度的限制。多功能结构动力复合材料结合了承重和储能功能,为高能量密度电池提供了替代方案,并有可能使电动飞机更轻更安全。本研究调查了将结构动力复合材料集成到未来电动飞机中的可行性,并评估了其对排放的影响。使用空客 A320 作为平台,概念性地设计了三种不同的电动飞机配置,包括结构动力复合材料、细长机翼和分布式推进。通过确定飞机任务性能要求和重量来估算结构动力复合材料所需的特定能量和功率。与传统 A320 相比,结构功率复合材料 >200 Wh/kg 的并联混合动力 A320 可在 1500 公里的任务中将燃油效率提高 15%。对于全电动 A320,结构功率复合材料 >400 Wh/kg 可将为 1000 公里飞行提供动力所需的电池比能或质量减半。
摘要:商业航空的发展受到提高效率从而降低排放的需求的推动。全电动飞机提供了一种消除直接燃料燃烧排放的途径,但其发展受到当前电池能量和功率密度的限制。多功能结构动力复合材料结合了承重和储能功能,为高能量密度电池提供了一种替代方案,并有可能使电动飞机更轻、更安全。本研究调查了将结构动力复合材料集成到未来电动飞机中的可行性,并评估了其对排放的影响。以空客 A320 为平台,概念性地设计了三种不同的电动飞机配置,包括结构动力复合材料、细长机翼和分布式推进。通过确定飞机任务性能要求和重量来估算结构动力复合材料所需的特定能量和功率。与传统 A320 相比,并联混合动力 A320 的结构功率复合材料 >200 Wh/kg 可将 1500 公里飞行任务的燃油效率提高 15%。对于全电动 A320,结构功率复合材料 >400 Wh/kg 可将 1000 公里飞行所需的电池比能或质量减半。
粘合接头在组装承重结构的结构可靠性和耐久性中起着重要作用。这项研究的灵感来自风力涡轮机叶片的应用,风力涡轮机叶片由复合材料制成,并通过粘合剂连接在一起。与传统的粘合接头指导原则相反,风力涡轮机叶片接头厚度较大,约为 10 毫米。出现空隙和孔隙的概率很高。尽管如此,机器的经济寿命为 20 年,疲劳可能是一个关键现象。这项研究侧重于自下而上的粘合剂性能表征及其在复合材料接头中逐层验证。它从本体粘合剂的表征开始,直至粘合接头样品和子部件。本文重点关注粘合剂材料本身和接头的水平。经过大量的实验,特别关注粘合剂的孔隙率,开发了一种概率方法来确定最合适的失效准则。强度预测方法不仅考虑应力分布的大小,还考虑应力作用的体积,从而考虑材料强度的统计尺寸效应。该方法随后用于简单接头中接头强度的数值预测以及受风力涡轮机叶片启发的应用中。接头的预测阻力与实验接头测试非常一致。
本研究提出了一种替代(即空气辅助)系统,使用从苏-22或米格-29战斗机发射的火箭将有效载荷(微型卫星)发射到太空。本文从多个方面验证和评估了这种用于将有效载荷发射到低地球轨道(LEO)的空气辅助火箭系统。任务概况和火箭投放机动概念已经制定出来。从所采用的计算模型和模拟结果可以看出,在所考虑的配置下,上述飞机将能够完成将至少10公斤的有效载荷发射到低地球轨道的任务。这些分析与模拟和风洞试验相辅相成,验证了太空火箭可能对运载机的空气动力学和机械性能产生的影响。对空气辅助火箭发射系统模型进行的数值模拟和风洞试验结果表明,火箭对飞机的空气动力学特性及其飞行特性的影响可以忽略不计。同样,机身承重结构所经受的负载和强度测试也未显示因所附太空火箭而引起的任何重大变化或变形。拟议的套件可视为波兰武装部队所谓的响应性太空资产。实施这样的系统不仅可以使我们摆脱对提供太空服务的国家或商业公司的依赖,而且还使我们能够在部署用于安全和防御目的的卫星系统的背景下掌握新能力。
我们提供了对双结功能性共同聚合物网络的规范介绍,该网络结合了高功能和低功能(F)动态交联连接,以赋予负载,消散和自我修复能力。这种独特的网络配置类型提供了由共价和可逆的交叉链接组成的传统双开关网络的替代方法。高F连接可以提供类似于共价交联的承重能力,同时保留自我修复和当前赋予刺激性反应性的能力,这是由高F连接物种引起的。我们使用金属配位聚合物水凝胶网络证明了该设计基序的机械性能,这些金属凝胶网络通过金属纳米颗粒(高F)和金属离子(低F)交联连接的不同比率进行动态交联。我们还展示了纳米颗粒交联聚合物的自发自组装到各向异性板上,这可能是可以推广的,用于设计具有低体积分数渗透高f网络的双结功能性网络。©2022作者。所有文章内容(除非另有说明,否则都将根据创意共享归因(cc by)许可(http://creativecommons.org/licenses/4.0/)获得许可。https://doi.org/10.1122/8.0000410
对可持续农业实践的需求不断增长,促使人们探索农机中的先进材料,以提高效率、减少环境影响和提高耐用性。本研究对两种有前途的材料进行了比较分析:木质聚合物复合材料 (WPC) 和纤维增强聚合物 (FRP),重点关注它们在农机中的应用。WPC 是木纤维和聚合物树脂的组合,在可再生来源、生物降解性和成本效益方面具有优势。相比之下,FRP 由嵌入聚合物基质中的玻璃、碳或芳族聚酰胺等纤维组成,在恶劣的农业条件下具有出色的强度重量比、耐腐蚀性和耐用性。该研究评估了这两种材料在应用于农机关键部件(包括结构部件、工具、油箱和人体工程学特征)时的机械性能、环境影响、制造工艺和性能。这两种材料都有助于提高可持续性,FRP 在耐用性和抗化学降解性方面优于 WPC,使其更适合在农机中长期应用。然而,对于某些非承重部件来说,WPC 是一种更具成本效益和更环保的替代方案。研究结果表明,在农业机械设计中同时采用 WPC 和 FRP 的混合方法可以为可持续农业的未来提供性能、可持续性和成本效益的最佳平衡。本文主要描述了 WPC 和 FRP 制造的加工方法。