• 贝叶斯叶片尖端定时 (BTT):Dawie Diamond、Stephan Heyns 教授和 Johannes Oberholster(工程、建筑环境和 IT) • BTT 瞬时共振:Dawie Diamond、Stephan Heyns 教授和 Johannes Oberholster(工程、建筑环境和 IT) • BBT 减少采样方法:Dawie Diamond、Stephan Heyns 教授和 Johannes Oberholster(工程、建筑环境和 IT) • 环形热解装置(吸热装置和过程):Mike Heydenrych 教授(工程、建筑环境和 IT) • 粉煤灰基覆层瓷砖:Elsabé Kearsley 教授、Stuart Grant Hofmeyer(工程、建筑环境和 IT) • 海鸥配置:Reinhard Joachim Huyssen(工程、建筑环境和 IT) • 平面机制:Douw Gerbrand Marx(工程、建筑环境和 IT) • 电气保护系统及其方法:Patrick Manditerza、Ramesh Bansal 教授(工程、建筑环境和 IT)• 识别基因突变的方法和试剂盒:Michael Pepper 教授、Cheryl Stewart、Green Robin 和 Masekela Refiloe(健康科学)• Myrsine 皮肤护理:Namrita Lall 教授(自然和农业科学)• 芳香蜡菊的抗癌活性(芳香蜡菊提取物和成分可用于预防和治疗皮肤癌):Namrita Lall 教授和 Danielle Berrington(自然和农业科学)• 为什么要耐受压力:Don Cowan 教授和 Jasmin Mertens 博士(自然和农业科学)
wen.zhu@baesystems.com (603) 885-5681 关键词:氮化镓 (GaN)、Ka 波段、MMIC、PAE 摘要 本文报告了 AFRL 的 4 英寸 140nm GaN-SiC 技术向 BAE 系统微电子中心 (MEC) 代工厂的转移和生产实施情况。我们将 AFRL 和 BAE 系统 GaN-SiC 的最佳技术集成到用于 Ka 波段和 Q 波段的 6 英寸 140nm GaN-SiC 生产工艺中,这是业界首个 6 英寸 140nm GaN-SiC 生产工艺。本文介绍了脉冲 IV (pIV)、FET 负载牵引、MMIC 性能和可靠性结果。 引言 2018 年,BAE 系统的 MEC 代工厂与 AFRL 合作,将 140nm 4 英寸 GaN-SiC 技术转移到 6 英寸 GaN-SiC。该计划的关键技术目标是通过转移和整合 AFRL 开发的关键工艺技术[1, 2]以及 BAE 系统现有的 GaN MMIC 工艺和能力,在位于新罕布什尔州纳舒厄的 BAE 系统代工厂建立一流的 140nm 氮化镓 (GaN) 生产技术,以实现 6 英寸 SiC 上 GaN 的高性能、高 MRL 工艺[3]。通过这项短栅极高效氮化镓 (GaN) 单片微波集成电路 (MMIC) 可生产性计划,BAE 系统正在满足美国国防部 (DoD) 的迫切需求,即建立一个可供美国国防界使用的开放式 GaN 代工厂,并提供先进的 GaN MMIC 工艺。开放式代工服务 - BAE 系统 BAE 系统 III-V 族化合物半导体代工厂是一项战略资产,可为其电子系统部门提供独特的 MMIC 技术。为美国国防部提供代工服务是为了更有效地利用我们代工厂的产能,锻炼和改进工艺,并加强与国防部外部供应商和政府机构的关系。完成 GaN 生产向 6 英寸晶圆直径的过渡是 140nm 技术活动下的一项关键任务。仅此一项就能将有效代工能力提高 2 倍以上。BAE Systems 目前正在投资其代工厂,更换工具,消除单点故障,同时满足生产需求。
受访者和信息提供者: • WHO/MPP:Martin Nicholson、Claudia Nannei、Christopher Chadwick、Charles Gore、Marie-Paule Kieny、Martin Friede、Soumya Swaminathan • Petro Terblanche,Afrigen,南非 • Analia Acabal、German Sanchez、Fernando Lobos,Sinergium Biotech,阿根廷 • Inna Deniak 和 Maksym Vorokhobin,Darnitsa,乌克兰 • Patrick Tippo,BioVac,南非 • Mina Adel,BioGeneric Pharma SAE,埃及 • Abdul Muktadir 和 Mainul Ahasan,Incepta Vaccines,孟加拉国 • Neni Nurainy 和 Adriansjah Azhari,Biofarma,印度尼西亚 • Arthur Salaaun,波士顿咨询集团 • Debbie King,威康信托基金 • Frederick Abbott,佛罗里达州立大学法学院 • Fatima Hassan,健康正义倡议 • Brook Baker,东北大学法学院
Covid-19大流行,其特色是试图建立全球制造网络以扩大疫苗供应的国际制药公司,对了解公司到公司技术转移的作用产生了浓厚的兴趣。尽管非常关注跟踪国际疫苗技术转移的程度,但我们对如何建立伙伴关系和实践工作知之甚少。了解此类项目面临的挑战以及如何克服此类挑战至关重要。本文介绍了英国 - 瑞典跨国制药公司阿斯利康(Astrazeneca)之间的合作伙伴关系,这是从事最广泛技术转移并建立最广泛的全球制造网络的疫苗开发人员与Bio-Manguinhos的疫苗开发商,与巴西卫生部有关的公共实验室。案例研究证明了能力和调节灵活性的重要性。此外,分析强调了影响技术转移过程和创新的政治因素的作用。由于涉及的风险以及需要快速动员现有能力并建立新功能,以及在制造业和监管过程中协调的必要条件,并分配资源以使这种安排可行,因此需要在政治上实现技术转移项目。期待,该案例研究对扩大技术转移的倡议的影响,以扩大全球南方的疫苗生产。
“技术转移活动的目标是在开发和制造之间以及在制造工厂内部或之间转移产品和工艺知识,以实现产品。这些知识构成了制造工艺、控制策略、工艺验证方法和持续改进的基础。”
这项应用研究的目的是为银行领域的基于物体的技术转移提供风险评估模型,而Strauss和Corbin方法用于识别初始模型。在定性部分中,通过对35位银行技术行业的35位专家以及基于技术的银行业务进行深入访谈,在三个阶段开放编码,轴向编码和选择性编码中分析了收集的信息。在统计人口的一小部分,专家和经理在伊朗银行业中,根据摩根的表格为386。结构方程和探索性分析的结果表明,因果因素与主要现象,干预因素和主要现象之间的所有关系是基本因素和主要现象,主要现象和策略,最后以及策略与策略之间的关系以及在高度至中等和直接和直接的方式中评估了结果。
IPO 的一个重要目标是对当地产生影响。LLNL 授权的技术已促成众多新企业的成立,这些企业正在帮助推动经济增长,并支持三谷地区和大旧金山湾地区的高科技商业机会。例如,LLNL 的 Droplet Digital™ 聚合物链反应 (ddPCR) 已授权给位于加利福尼亚州普莱森顿的 QuantaLife, Inc. 这项技术可快速筛查生物样本中的病原体。它目前正用于检测感染患者中是否存在 COVID-19。LLNL 先进的激光喷丸系统已授权给位于加利福尼亚州利弗莫尔的 Metal Improvement Co. Inc. 这项技术可显著增强金属部件的强度,并已在商用飞机上喷丸了 40,000 多个喷气发动机风扇叶片。激光喷丸还用于波音 787-8 的机翼成型,使该飞机成为世界上每乘客英里燃油效率最高的飞机。 LLNL 开发的 DYNA3D 是第一个精确模拟金属结构弯曲、折叠和塌陷的计算机代码。DYNA3D 已授权给位于加州利弗莫尔的利弗莫尔软件技术公司,是汽车行业用于车辆碰撞测试的基础技术。
该路线图采用拓扑组装的前体(TAP)的技术,通过三个步骤可以阻止访问基态或其他异构体:(1)将所需结构的原子,结构和局部对称性的前体分子选择(2),然后将其选择为不同的拓扑组成。这是通过将前体单元限制在受约束的超晶格中并控制其整体取向以诱导相邻单元某些原子节点之间的连通性来实现的。(3)然后使用密度功能理论将这些拓扑组件放松到其最近的势能表面临界点。已提出了该路线图的使用,用于合成仅由五角大碳组成的五烯 - 五甲基 - 3,3-二甲基-1-丁烯(C 6 H 12)。理论计算表明,该碳多晶型物在动态和机械上是稳定的,耐温度高达1000 K,具有超高的理想强度,可以优于石墨烯,并且具有内在的准准级带隙,最大为3.25 eV。
