人类的手在动物界中独一无二,拥有无与伦比的灵活性,从复杂的抓握到精细的手指个体化。大脑如何表示如此多样化的动作?我们使用皮层脑电图和降维方法评估了人类“抓握网络”中尺度神经动力学,以了解一系列手部动作。令人惊讶的是,我们发现抓握网络同时表示手指和抓握动作。具体而言,表征多区域神经协方差结构的流形在该分布式网络的所有运动中都得以保留。相反,该流形中的潜在神经动力学令人惊讶地特定于运动类型。将潜在活动与运动学对齐可以进一步发现不同的子流形,尽管运动之间的关节协同耦合相似。因此,我们发现,尽管在分布式网络层面上保留了神经协方差,但中尺度动力学被划分为特定于运动的子流形;这种中尺度组织可能允许在一系列手部动作之间进行灵活切换。
人类的手在动物界中独一无二,拥有无与伦比的灵活性,从复杂的抓握到精细的手指个体化。大脑如何表示如此多样化的动作?我们使用皮层脑电图和降维方法评估了人类“抓握网络”中尺度神经动力学,以了解一系列手部动作。令人惊讶的是,我们发现抓握网络同时表示手指和抓握动作。具体而言,表征多区域神经协方差结构的流形在该分布式网络的所有运动中都得以保留。相反,该流形中的潜在神经动力学令人惊讶地特定于运动类型。将潜在活动与运动学对齐可以进一步发现不同的子流形,尽管运动之间的关节协同耦合相似。因此,我们发现,尽管在分布式网络层面上保留了神经协方差,但中尺度动力学被划分为特定于运动的子流形;这种中尺度组织可能允许在一系列手部动作之间进行灵活切换。
摘要 — 用户-假肢接口 (UPI) 的复杂性,用于控制和选择主动上肢假肢的不同抓握模式和手势,以及使用肌电图 (EMG) 所带来的问题,以及长时间的训练和适应,都会影响截肢者停止使用该设备。此外,开发成本和具有挑战性的研究使得最终产品对于绝大多数桡骨截肢者来说过于昂贵,并且经常为截肢者提供无法满足其需求的界面。通常,EMG 控制的多抓握假肢将一组肌肉的特定收缩的具有挑战性的检测映射到一种抓握类型,将可能的抓握次数限制为可区分的肌肉收缩次数。为了降低成本并以定制方式促进用户和系统之间的交互,我们提出了一种基于图像和 EMG 对象分类的混合 UPI,与 3D 打印上肢假肢集成,由 Android 开发的智能手机应用程序控制。这种方法可以轻松更新系统,并降低用户所需的认知努力,从而满足功能性和低成本之间的权衡。因此,用户可以通过拍摄要交互的物体的照片来实现无数预定义的抓握类型、手势和动作序列,只需使用四种肌肉收缩来验证和启动建议的交互类型。实验结果表明,假肢在与日常生活物体交互时具有出色的机械性能,控制器和分类器具有很高的准确性和响应能力。
中尺度区域,不能捕捉到运动系统的全部信息内容。在这项工作中,我们记录了 8 名癫痫患者的颅内脑电图,包括除中央沟内或相邻电极接触外的所有电极接触。我们表明,执行运动和想象运动可以从非运动区域解码;将所有非运动接触组合成一个低维表示形式,为黎曼解码器提供了足够的信息,使其达到 0.83 ± 0.11 的曲线下面积。此外,通过在执行运动上训练我们的解码器并在想象运动上进行测试,我们证明这两种情况之间存在在 beta 频率范围内共享的分布信息。通过将来自所有区域的相关信息组合成一个低维表示形式,解码器能够在没有初级运动皮层信息的情况下实现较高的解码结果。这种表示形式使解码器对扰动、信号非平稳性和神经组织退化更具鲁棒性。我们的结果表明,超越运动皮层可以为更强大、更多功能的脑机接口开辟道路。
‡…‡'Ž‹ - ‹…■ - “•• - Šƒ•Љš都™ ƒǧ”ƒ†‹ƒ– st'• - “•”‡'Š— ƒ—ƒ‡ƒ‡ƒ学生ƒƒ†• - ”〜× †‹ƒ–™•›†”'‡ȋȋו…‡•••××……›…ƒ•••€ - …™…އƒ• ͷ–ish‡“ƒ”‡ - - - - –• - •ˆ'”× “ - –ƒ×† - †‡”“”ƒ†抓握ƒ–×'ǧ‹† - …‡†††抓‡”‡ - —ch – j‰‡‡‡‡‡‡!'“‡••×'ǡ<ǡ<ǡǡ†™‡‡â€‡”‡———“‡”• ‰!差” - - ”„„ ƒ–找ˆ'” –Ї –”‡ƒ– ‡ – 'ˆ —•‹ ‰ •›•–‡ •Ǧއ˜‡Ž ‰‡ ‡ ƒ••'…‹ƒ–‹' • ‹ –‡‰”ƒ–‡† ™‹–Š —Ž–‹'އ „‹'Ž'‰‹…ƒŽ ‹ ˆ'” ƒ–‹' Ǥ Ї ‹†‡ –‹Ƥ‡† ‰‡ ‡• ‹‰Š– '”'˜‹†‡ Š‹‰Š …' Ƥ†‡ …‡ †”—‰ –ƒ”‰‡– …ƒ †‹†ƒ–‡• ˆ'” ''–‡ –‹ƒŽ †”—‰ ”‡'—”''•‹ ‰ ˆ'” Ǥ
摘要 - 关于可变形线性对象(DLO)操纵的大多数研究都假定刚性抓握。然而,除了刚性的抓握和重新抓紧之外,在掌握的范围之外,人类也是人类使用敏捷操纵DLOS的重要技能,它需要通过握住DLO来防止其掉落的同时通过手动滑动来连续更改抓握点。在没有使用专门设计但不是多功能的最终效果的情况下,实现这种技能对于机器人来说非常具有挑战性。以前的作品尝试使用通用的平行抓地力,但是由于关注和持有之间的冲突,它们的稳健性并不令人满意,这很难与一级自由的抓手保持平衡。在这项工作中,受到人类如何使用手指跟随DLOS的启发,我们探索了具有触觉感知的通用灵巧的手的用法,以模仿人类的技能并获得强大的DLO跟随。为了使硬件系统能够在现实世界中运行,我们开发了一个框架,其中包括笛卡尔空间手臂控制,基于触觉的In-Hand-hand 3-D DLO姿势估计以及特定于任务的运动设计。实验结果证明了我们方法比使用平行抓手的显着优势,以及它的稳健性,可推广性和效率。
摘要 — 从脑电图信号中对不同的精细手部运动进行分类代表着相关的研究挑战,例如在用于运动康复的脑机接口应用中。在这里,我们分析了两个不同的数据集,其中精细手部运动(触摸、抓握、手掌和侧抓握)以自定节奏的方式执行。我们训练并测试了一个新提出的卷积神经网络(CNN),并将其分类性能与两个成熟的机器学习模型进行了比较,即收缩 LDA 和随机森林。与以前的文献相比,我们利用神经科学领域的知识,并在所谓的运动相关皮质电位(MRCP)上训练我们的 CNN 模型。它们是低频(即(0.3,3)Hz)的脑电图幅度调制,已被证明可以编码运动的几种属性,例如抓握类型、力量水平和速度。我们表明,CNN 在两个数据集中都取得了良好的表现,并且与基线模型相似或优于基线模型。此外,与基线相比,我们的 CNN 需要更轻松、更快速的预处理程序,为其在线模式(例如,许多脑机接口应用)中的可能使用铺平了道路。
研究文章 | 系统/电路 猕猴在同侧和对侧伸手抓握过程中初级和运动前皮质局部场电位的差异调节 https://doi.org/10.1523/JNEUROSCI.1161-23.2024 收到日期:2023 年 6 月 23 日 修订日期:2024 年 4 月 2 日 接受日期:2024 年 4 月 3 日 版权所有 © 2024 Falaki 等人。这是一篇开放获取的文章,根据知识共享署名 4.0 国际许可条款分发,允许在任何媒体中不受限制地使用、分发和复制,前提是对原始作品进行适当的署名。
该领域将机器人技术和机器学习合并以开发自适应系统,使机器人能够通过反复试验和错误学习复杂的技能,例如抓握,拾取,放置和组装,从而增强灵活性和概括。