摘要 背景 右侧和左侧结肠的肿瘤发生具有不同的特征。目的 我们旨在描述代表结肠肿瘤发生早期的左侧和右侧腺瘤 (AD) 之间的差异。设计 分析单细胞和空间转录组数据集以揭示右侧和左侧结肠 AD 之间的改变。使用细胞、动物实验和临床标本来验证结果。结果 单细胞分析显示,在右侧 AD 中,杯状细胞显著减少,并且这些杯状细胞功能失调,粘蛋白生物合成减弱,抗原呈递缺陷。粘液屏障受损导致隐窝中形成生物膜,随后细菌侵入右侧 AD。空间转录组学显示,在隐窝周围有生物膜占据的区域经历了脂多糖 (LPS) 的炎症反应和细胞凋亡过程。在右侧 AD 中发现了独特的 S100A11 + 上皮细胞群,其表达水平由细菌 LPS 和肽聚糖诱导。S100A11 表达促进了同基因免疫功能正常小鼠的肿瘤生长,髓系抑制细胞 (MDSC) 增加,但细胞毒性 CD8+ T 细胞减少。用耐受性良好的晚期糖基化终产物 (RAGE) 受体拮抗剂 (Azeliragon) 靶向 S100A11 可显著抑制肿瘤生长和 MDSC 浸润,从而提高抗程序性细胞死亡蛋白 1 治疗结肠癌的疗效。结论我们的研究结果表明,功能失调的杯状细胞和随之而来的细菌易位激活了右侧结肠 AD 中的 S100A11-RAGE 轴,从而募集 MDSC 来促进免疫逃避。Azeliragon 靶向该轴可提高结肠癌免疫治疗的疗效。
摘要 — 诱导针对人类免疫缺陷病毒 (HIV) 的广谱中和抗体 (bnAbs) 的疫苗将有助于控制该疾病。膜近端外部区域 (MPER) 肽是一种有吸引力的抗原候选物,因为它是保守的并且是几种人类 bnAbs 的靶标,例如 2F5。我们之前发现含有钴卟啉磷脂 (CoPoP) 的脂质体可以与带有 his 标记的 MPER 肽结合,从而在脂质双层上产生仿生抗原呈递。本研究生成了各种带有 his 标记的合成 MPER 片段,这些片段与含有 CoPoP 和合成单磷酰脂质 A (MPLA) 的脂质体结合,并评估了小鼠的免疫原性。与较短的 MPER 肽相比,氨基酸片段源自膜插入点且长度至少为 25 个氨基酸的 MPER 肽具有更高的 2F5 反应性并诱导更强的抗体反应。与 Alum 和 Montanide 佐剂相比,用脂质呈递的 MPER 免疫可引发更强的抗体反应,后者可识别含有 MPER 序列的重组 gp41 和 gp140 蛋白。诱导的抗体可中和对中和抗体 (W61D(TCLA)0.71) 敏感的 1A 级病毒,但不能中和另一级 1A 级或 2 级毒株。MPER 肽与无关疟疾蛋白抗原 (Pfs25) 共同配制,该抗原与含有 CoPoP 和 MPLA 的脂质体有效佐剂结合,可引发更高的 MPER 抗体水平,但不会改善中和,可能是由于干扰了膜中正确的肽呈递。产生了产生 MPER 抗体的鼠杂交瘤,但它们是非中和性的。这些结果并不
肿瘤治疗(尤其是免疫治疗和溶瘤病毒治疗)的有效性主要取决于宿主免疫细胞的活性。然而,癌症患者体内存在各种局部和全身免疫抑制机制。肿瘤相关免疫抑制涉及许多免疫成分的失调,包括 T 淋巴细胞数量减少(淋巴细胞减少症)、循环和肿瘤滤过性免疫抑制亚群水平或比率增加 [例如巨噬细胞、小胶质细胞、髓系抑制细胞 (MDSC) 和调节性 T 细胞 (Treg)],以及由于各种可溶性和膜蛋白(受体、共刺激分子和细胞因子)表达改变导致抗原呈递、辅助和效应免疫细胞亚群功能缺陷。在这篇综述中,我们特别关注标准放化疗前胶质母细胞瘤/神经胶质瘤患者的数据。我们讨论了基线时的胶质母细胞瘤相关的免疫抑制以及循环和肿瘤滤过免疫细胞(淋巴细胞、CD4+ 和 CD8+ T 细胞、Treg、自然杀伤 (NK) 细胞、中性粒细胞、巨噬细胞、MDSC 和树突状细胞)不同亚群的预后意义,包括中性粒细胞与淋巴细胞比率 (NLR),重点关注异柠檬酸脱氢酶 (IDH) 突变型胶质瘤、原神经、经典和间充质分子亚型的免疫概况和预后意义,并强调了大脑免疫监视的特点。所有试图在胶质母细胞瘤组织中确定可靠的预后免疫标志物的尝试都得到了相互矛盾的结果,这可以解释为,除其他外,免疫滤液前所未有的空间异质性水平以及免疫亚群的显著表型多样性和(功能障碍)功能状态。高 NLR 是胶质母细胞瘤和癌症患者总生存期较短的最反复证实的独立预后因素之一,其与其他免疫反应或全身炎症标志物相结合可显著提高预测的准确性;然而,需要更多的前瞻性研究来证实 NLR 的预后/预测能力。我们呼吁
主要指导老师:Mark Linch 博士(伦敦大学学院癌症研究所)m.linch@ucl.ac.uk 次要指导老师:Sergio Quezada 博士(伦敦大学学院癌症研究所)s.quezada@ucl.ac.uk 资金和期限 成功的申请者将获得 DUrANCE 的资助:3 年全日制学习。 津贴:每年 23,000 英镑(免税)。 学费(仅限英国费率)包含在内。 所有学生在伦敦大学学院注册的标准学习时间为 4 年,但该项目旨在在 3 年内完成,且资金仅涵盖该期间。 关于项目 尿路上皮癌是一种常见癌症,是第一个用获批的免疫治疗剂 BCG 治疗的肿瘤。 BCG 是一种减毒活结核病,可非特异性刺激免疫系统并促进癌细胞死亡。随后,靶向免疫疗法以检查点抑制、抗体药物偶联物和最近的细胞因子疗法的形式在尿路上皮癌中显示出希望(1)。一种模拟树突状细胞抗原呈递的 IL-15 融合蛋白与 BCG 结合,导致约 25% 的患者产生持久反应(2)。随着 COVID-19 疫情的爆发和疫苗的广泛使用,人们对癌症疫苗重新产生了兴趣。伦敦大学学院赞助的 DURANCE 研究正在研究肿瘤相关抗原肽疫苗在非肌层浸润性膀胱癌中的作用。使用 BCG 后病情进展的患者可以接受疫苗和检查点抑制剂联合治疗,但只有少数患者可能会产生反应。能够产生高持久反应率的治疗仍然是尚未满足的临床需求。这项工作的目的是开发一种基于细胞因子的新型免疫疗法,以增强疫苗在尿路上皮癌中的活性,这是伦敦大学学院免疫疗法工程计划的一部分(3)。目的:
硼替佐米已成功治疗多发性骨髓瘤,但对实体瘤无效,神经病变、血小板减少症和耐药性的出现等毒性促使人们努力寻找替代的蛋白酶体抑制剂。双苄基哌啶酮(如 RA190)共价结合 ADRM1/RPN13,这是一种泛素受体,支持识别蛋白酶体的多泛素化底物及其随后的去泛素化和降解。虽然这些候选 RPN13 抑制剂 (iRPN13) 在小鼠癌症模型中显示出有希望的抗癌活性,但它们的类药物特性并不理想。在这里,我们描述了 Up284,一种新型候选 iRPN13,它具有一个中心螺碳环,代替了 RA190 有问题的哌啶酮核心。来自不同癌症类型(卵巢癌、三阴性乳腺癌、结肠癌、宫颈癌和前列腺癌、多发性骨髓瘤和胶质母细胞瘤)的细胞系对 Up284 敏感,包括几种对硼替佐米或顺铂有抗性的细胞系。Up284 和顺铂在体外表现出协同细胞毒性。Up284 诱导的细胞毒性与线粒体功能障碍、活性氧水平升高、极高分子量多泛素化蛋白质聚集体的积累、未折叠蛋白质反应和细胞凋亡的早期发生有关。Up284 和 RA190,但不是硼替佐米,在体外增强了抗原呈递。Up284 在数小时内从血浆中清除,并在 24 小时内在主要器官中积聚。单剂量 Up284 经腹膜内或口服给药于小鼠,可抑制肌肉和肿瘤中的蛋白酶体功能,持续时间超过 48 小时。在重复剂量研究中,小鼠对 Up284 的耐受性良好。Up284 在异种移植、同源和基因工程小鼠卵巢癌模型中表现出治疗活性。
嵌合抗原受体(CAR)设计的T细胞代表癌症的前线治疗。但是,当前的汽车T细胞制造方案不能充分再现免疫突触的形成。在此响应这种限制,我们开发了一个柔性石墨烯氧化物抗原呈递平台(GO-APP),该平台将抗体固定在氧化石墨烯上。通过对氧化石墨烯(GO-APP 3/28)上的抗CD3(αCD3)和抗CD28(αCD28)进行装饰,我们实现了显着的T细胞增殖。GO-APP 3/28与T细胞之间的体外相互作用紧密模仿抗原呈递细胞和T细胞之间的体内免疫突触。 这种免疫突触模仿的模仿表现出刺激T细胞增殖的高能力,同时保留其多功能性和高效力。 同时,它提高了CAR基因工程效率,与标准方案相比,CAR T细胞产生的增长超过五倍。 值得注意的是,GO-APP 3/28在T细胞中刺激了适当的自分泌白介素-2(IL-2),并克服了对外部IL-2补充的体外依赖,从而提供了与IL-2补充无关的培养基于T细胞的产物的机会。GO-APP 3/28与T细胞之间的体外相互作用紧密模仿抗原呈递细胞和T细胞之间的体内免疫突触。这种免疫突触模仿的模仿表现出刺激T细胞增殖的高能力,同时保留其多功能性和高效力。同时,它提高了CAR基因工程效率,与标准方案相比,CAR T细胞产生的增长超过五倍。值得注意的是,GO-APP 3/28在T细胞中刺激了适当的自分泌白介素-2(IL-2),并克服了对外部IL-2补充的体外依赖,从而提供了与IL-2补充无关的培养基于T细胞的产物的机会。
淋巴瘤细胞与其微环境的相互作用在疾病发病机制中起着重要作用,目前正积极利用免疫调节药物(包括免疫检查点抑制剂)进行治疗。弥漫性大 B 细胞淋巴瘤 (DLBCL) 是一种侵袭性高级别疾病,接受 R-CHOP 免疫化疗治疗的患者中约 40% 仍无法治愈。FOXP1 转录因子在这种高风险 DLBCL 中大量表达,我们最近确定了其对免疫反应特征的调节,特别是其对主要组织相容性 II 类 (MHC-II) 细胞表面表达的抑制,这在抗原呈递给 T 细胞方面起着关键作用。利用 CRISPR/Cas9 基因组编辑,我们已消除侵袭性小鼠 A20 淋巴瘤细胞系中的 Foxp1 表达。在 BALB/c 小鼠中生长时,该细胞系可提供高保真免疫功能正常的播散性淋巴瘤模型,该模型显示出人类 DLBCL 的许多特征。使用 siRNA 暂时消耗 Foxp1,使用 CRISPR(通过独立靶向 Foxp1 外显子 6 或 7 产生)稳定消耗 Foxp1,可上调细胞表面 IA b(MHC-II)表达,而不会损害体外细胞活力。Foxp1 消耗的 A20 克隆的 RNA 测序确定了常见的失调基因,例如 B 细胞标志物 Cd19,以及标志性的 DLBCL 特征,例如 MYC 靶标和氧化磷酸化。患有 Foxp1 消耗的 A20 淋巴瘤的免疫功能正常的动物生存率显著提高,20% 没有发展为肿瘤;与调节免疫监视一致,这在免疫缺陷的 NOD SCID γ 小鼠中没有观察到。A20 Foxp1 CRISPR 模型将有助于进一步表征 Foxp1 对淋巴瘤免疫逃避的贡献以及 Foxp1 靶向与其他免疫疗法产生协同作用的潜力。
2024 年 5 月 15 日 流感是一种影响所有年龄段的疾病,但其严重形式优先影响 65 岁及以上的人群,死亡率超过 90%。从 65 岁开始,每年由健康保险承保的季节性流感疫苗可降低因各种原因住院和死亡的风险约 35%。然而,它的有效性会因季节而异,并且可能会在几个月内下降,尤其是在最脆弱的老年人中 [1]。为了克服与免疫衰老相关的疫苗反应受损,一种方法是增加施用的抗原剂量,以激活更多抗原呈递树突状细胞,从而增加对 T 和 B 淋巴细胞的刺激。自 2020 年以来,这种方法已用于高剂量 (HD) Efluelda® 疫苗,用于 60 岁及以上且从 65 岁起享受健康保险的人群,以对抗流感。这种 HD 疫苗是四价的,含有来自 4 种病毒株的 60 µg 血凝素,即 A/Victoria/4897/2022 (H1N1)、A/Darwin/9/2021 (H3N2)、B/Austria/1359417/2021 和 B/Phuket/3073/2013 (Yamagata 谱系)。与每株病毒含有 15 µg 血凝素的“标准剂量”(SD) 制剂相比,HD 制剂的耐受性同样良好 [2],但在老年人和免疫功能低下人群中更具免疫原性 [3]。它能增强对流感并发症的保护,并降低养老院居民因呼吸道原因住院的风险 [4]。一项涵盖 12 个流感季节、包括 4500 多万老年人的荟萃分析表明,三价 HD 疫苗的保护效果明显优于三价 SD 疫苗,并且能有效预防流感住院 [5]。在卫生当局和赛诺菲实验室就疫苗售价产生分歧后,Efluelda ® 于 2024 年 4 月 23 日宣布从法国市场撤出 [6],目前仅剩 DS 流感疫苗可供使用。这一不幸的公告损害了下一次老年人疫苗接种活动的有效性。
自 2019 年 3 月被世界卫生组织指定为大流行病以来,SARS-CoV-2 已感染超过 5.4 亿人,并在 2022 年 6 月造成 600 万人死亡(1)。此外,这种病毒还在不断变异,出现新的变种(2)。虽然目前使用 SARS-CoV-2 疫苗可以控制 COVID-19 感染和死亡率,但包括荟萃分析在内的多项研究表明,接种疫苗后 6 个月内疫苗效力下降高达 30%,疫苗对抗新出现的 SARS-CoV-2 变种的能力也会降低(3,4)。各种因素导致的疫苗接种覆盖率不理想以及公众对现有 SARS-CoV-2 疫苗的排斥也加剧了这一问题(5)。因此,仍有必要研发能够长期持续、对各种变种都有效、提高疫苗接种覆盖率和公众接受度的疫苗。开发基于树突状细胞 (DC) 的疫苗是一种可以克服现有问题的创新型疫苗。基于 DC 的疫苗利用 DC 作为抗原呈递细胞 (APC) 的能力来诱导以 T 细胞免疫为导向的人体免疫系统 (6)。用离体方法开发基于自体 DC 的疫苗可能是一种有效的方法,因为它可以确保所用 DC 的质量,简化 DC 成熟过程和发生的抗原呈递,并提高疫苗接种的安全性,包括对于有疫苗接种禁忌症的合并症受试者。此外,自体疫苗有可能提高公众对疫苗接种的接受度 (7)。在之前的研究中,I 期和 II 期临床试验的临床前和中期分析结果均发现这种疫苗具有良好的潜力。在短期观察中(3 个月),在 I 期和 II 期临床试验的受试者中未发现严重不良事件 (SAE)。此外,携带 SARS CoV-2 S 蛋白的自体树突状细胞疫苗(AV-COVID-19 或 Nusantara 疫苗)可以很好地诱导足够的 T 细胞免疫。该疫苗还可以形成抗体反应 (8)。本文将介绍 1 年观察期内的安全性结果。还分析了树突状细胞疫苗的有效性潜力。
项目:开发 HIV 疫苗的主要途径之一仍然是诱导保护性抗体。疫苗设计的基本方法是通过融合单克隆抗体 (mAb) 将 HIV 抗原靶向树突状细胞 (DC) 上的特定受体,目的是有利于抗原呈递和激活 HIV 特异性免疫反应。我们建议通过开发针对皮肤朗格汉斯细胞 (LC) 的 HIV 候选疫苗来扩展这种疫苗方法。我们提供的证据表明,适当靶向的人类朗格汉斯细胞可能被授权有效诱导 Tfh 细胞和 HIV 特异性 B 细胞反应。我们的研究进一步强调,LC 是诱导生发中心 B 细胞和抗体反应的重要目标。博士后候选人将参加在 CIML/CIPHE 站点进行的研究计划。他/她将研究小鼠模型中的不同免疫途径,以及同源或异源的初免加强方案。候选人将专注于疫苗的细胞和转录组特征。总体而言,该项目的结果将评估针对朗格汉斯细胞的疫苗有效诱导针对 HIV 抗原的体液反应的能力。 候选人简介:我们正在寻找一名合格且积极主动的免疫学博士。候选人应在流式细胞术和免疫功能测定方面拥有丰富的经验。出色的技术技能、强烈的积极性、自主性以及与团队负责人和合作者快速有效地开发拟议项目的能力至关重要。必须接受动物实验的认证培训。 薪资:取决于经验并符合 Inserm 政策。 联系方式:该职位有效期为 36 个月,需要在 2020 年 4 月至 2020 年 7 月之间开始。申请人应向 Sylvain Cardinaud (sylvain.cardinaud@inserm.fr) 和 Sandrine Henri (henri@ciml.univ-mrs.fr) 提交一份个人简历、研究成果和职业目标的简要描述、出版物清单以及三位推荐人的姓名。