摘要 —我们提出了 SnCQA,这是一组硬件高效的等变分电路,分别针对置换对称性和空间格子对称性,量子比特数为 n。通过利用系统的置换对称性(例如许多量子多体和量子化学问题中常见的格子哈密顿量),我们的量子神经网络适用于解决存在置换对称性的机器学习问题,这可以大大节省计算成本。除了理论上的新颖性之外,我们发现我们的模拟在量子计算化学中学习基态的实际实例中表现良好,我们可以通过几十个参数实现与传统方法相当的性能。与其他传统变分量子电路(如纯硬件高效假设(pHEA))相比,我们表明 SnCQA 更具可扩展性、准确性和抗噪声能力(在 3 × 4 方格上的性能提高了 20 倍,在我们的案例中,在各种格子尺寸和关键标准(例如层数、参数和收敛时间)下节省了 200% - 1000% 的资源),这表明在近时间量子设备上进行实验可能是有利的。
第 1 章:遗传算法简介 8 什么是遗传算法? 9 达尔文进化论 9 遗传算法的类比 10 基因型 10 种群 11 适应度函数 11 选择 11 交叉 12 突变 12 遗传算法背后的理论 13 模式定理 14 与传统算法的区别 15 基于种群 16 遗传表示 16 适应度函数 16 概率行为 17 遗传算法的优势 17 全局优化 18 处理复杂问题 19 处理缺乏数学表示的情况 19 抗噪声能力 19 并行性 20 持续学习 20 遗传算法的局限性 20 特殊定义 21 超参数调整 21 计算密集型 21 过早收敛 21 没有保证的解决方案 22 遗传算法的用例 22 总结 23 进一步阅读 23 第 2 章:理解遗传算法的关键组成部分 24 遗传算法的基本流程 25 创建初始种群 26
提出了一种量子增强、无闲散传感协议,用于在有噪声和有损耗的情况下测量目标物体对探测器频率的响应。在该协议中,考虑了一个嵌入热浴中的具有频率相关反射率𝜼(𝝎)的目标。目的是估计参数𝝀 = 𝜼(𝝎 2) − 𝜼(𝝎 1),因为它包含不同问题的相关信息。为此,采用双频量子态作为资源,因为有必要捕获有关该参数的相关信息。对于双模压缩态(HQ)和一对相干态(HC),在假设的𝝀 ≈ 0 的邻域中计算相对于参数𝝀的量子费希尔信息H,𝝀的估计显示出量子增强。这种量子增强会随着被探测物体的平均反射率而增长,并且具有抗噪声性。推导出最佳可观测量的显式公式,并提出了基于基本量子光学变换的实验方案。此外,这项工作为雷达和医学成像(特别是在微波领域)的应用开辟了道路。
在这里,我们研究解码通过未知量子态传输的信息的问题。我们假设 Alice 将字母表编码为一组正交量子态,然后将其传输给 Bob。然而,介导传输的量子通道将正交状态映射到非正交状态,可能混合。如果没有准确的通道模型,那么 Bob 收到的状态是未知的。为了解码传输的信息,我们建议训练测量设备以在鉴别过程中实现尽可能最小的误差。这是通过用经典通道补充量子通道来实现的,经典通道允许传输训练所需的信息,并采用抗噪声优化算法。我们在最小误差鉴别策略的情况下演示了训练方法,并表明它实现了非常接近最优误差概率。特别是,在两个未知纯态的情况下,我们的建议接近 Helstrom 界限。对于更高维度中的大量状态,类似的结果也成立。我们还表明,减少训练过程中使用的搜索空间可以大大减少所需资源。最后,我们将我们的建议应用于相位翻转通道达到最佳误差概率的准确值的情况。
摘要变分混合量子经典算法 (VHQCA) 是利用经典优化来最小化成本函数的近期算法,该算法可以在量子计算机上进行有效评估。最近,VHQCA 已被提出用于量子编译,其中目标幺正 U 被编译成短深度门序列 V。在这项工作中,我们报告了这些算法一种令人惊讶的噪声弹性形式。也就是说,我们发现尽管在成本评估电路中存在各种不相干噪声源,但人们经常会学习正确的门序列 V(即正确的变分参数)。我们的主要结果是严格的定理,指出最佳变分参数不受广泛噪声模型的影响,例如测量噪声、门噪声和泡利通道噪声。此外,我们在 IBM 噪声模拟器上的数值实现在编译量子傅里叶变换、Toffoli 门和 W 态准备时表现出弹性。因此,变分量子编译由于其稳定性,对于噪声较大的中型量子设备具有实际用途。最后,我们推测这种抗噪声能力可能是一种普遍现象,适用于其他 VHQCA,例如变分量子本征解算器。
摘要:量子计算正在成为一种新的计算范式,有可能改变包括量子化学在内的多个研究领域。然而,当前的硬件限制(包括有限的相干时间、门不保真度和连通性)阻碍了大多数量子算法的实现,需要更具抗噪声能力的解决方案。我们提出了一种基于跨相关 (TC) 方法的显式相关 Ansatz,以直接针对这些主要障碍。这种方法无需任何近似,将波函数中的相关性直接转移到哈密顿量中,从而减少了使用嘈杂的量子设备获得准确结果所需的资源。我们表明,TC 方法允许更浅的电路并改善了向完整基组极限的收敛,在化学精度范围内提供能量以使用更小的基组进行实验,从而减少量子比特。我们通过使用两个和四个量子比特分别计算氢二聚体和氢化锂的键长、解离能和振动频率,接近实验结果,从而展示了我们的方法。为了展示我们方法的当前和近期潜力,我们进行了硬件实验,结果证实 TC 方法为在当今的量子硬件上进行精确的量子化学计算铺平了道路。
微电网是一种经过验证的范例,可以灵活管理分布式能源 (DER) 并确保电力在停电时的弹性[1,2]。在众多微电网功能中,状态估计至关重要,因为它能够基于有限数量的传感器(例如微型PMU(微相量测量单元))对微电网进行在线监控。微电网状态估计的基本要求主要包括准确性、效率和抗噪声能力[3]。对于现代微电网,由于社区扩大、不确定可再生能源的高渗透率和不稳定的运行条件,对高频状态估计的需求日益迫切和重要[4]。然而,几乎所有经典状态估计方法的复杂性都随着问题规模呈多项式增长,这使得这些方法不再适合具有强大实时运行需求的未来电网。为了克服复杂性问题,量子计算提供了一种有前途的解决方案。与经典计算不同,量子计算需要更少的比特(即量子比特)来处理复杂问题。对于微电网状态估计,一个主要的瓶颈是建立一种高效的稀疏线性方程组求解器。目前,量子线性系统算法主要有两种:混合量子/经典算法和基于量子电路的算法[5,6]。混合算法是为噪声中尺度量子(NISQ)时代开发的。例子包括变分量子线性系统
数字计算机不断增长的处理能力需求不可能无限期地得到满足,除非计算领域出现范式转变。神经形态计算从大脑的高度并行、低功耗、高速和抗噪声计算能力中汲取灵感,可能带来这样的转变。来自学术界和工业界的许多研究人员一直在研究材料、设备、电路和系统,以实现神经元和突触网络的一些功能,从而开发神经形态计算平台。这些平台采用各种硬件技术设计,包括成熟的互补金属氧化物半导体 (CMOS) 和新兴的忆阻技术,如基于 SiO x 的忆阻器。本文重点介绍了用于神经形态系统的 CMOS、基于 SiO x 的忆阻器和混合 CMOS-忆阻硬件的最新进展。本文提供了各种设备的新成果和已发表成果,这些设备旨在复制神经元、突触和简单脉冲网络的选定功能。结果表明,CMOS 和忆阻设备组装在不同的神经形态学习平台中,以执行简单的认知任务,例如对基于脉冲速率的模式或手写数字进行分类。本文设想,所展示的内容将对非常规计算研究界有用,因为它可以深入了解神经形态硬件技术的进步。
误报。在垃圾邮件过滤器的情况下,高精度可确保合法电子邮件不会被错误地标记为垃圾邮件。量化AI系统的鲁棒性时,可以计算其对抗性鲁棒性,分布稳健性,稳健性,抗噪声或对输入变化的鲁棒性。对抗性鲁棒性衡量系统对距离指标限制的故意输入操作的弹性,该距离指标捕获了原始输入和对抗性示例之间的差异。分布(OOD)鲁棒性评估系统在训练分布之外的真实数据点上的性能。对噪声的鲁棒性评估(特定于域的)噪声被添加到输入数据时,可以评估性能稳定性。最后,针对输入变化的鲁棒性评估系统可以如何应对输入的系统变化,例如在图像数据的情况下旋转或亮度变化。这些指标与用例相关,从自动驾驶(系统必须在不利天气条件下可靠的自动驾驶)到语音识别,鲁棒性确保了准确的结果,例如在有重音或背景噪声的情况下。最后,可以使用类似于用于测量准确性的指标来检测AI系统中偏差的存在,但重要的是在不同的情况下应用。准确性测试的关键区别在于选择数据实例或方案,这应该代表我们期望相等的性能水平的测试用例。实践测试:技术挑战尤其是在作为访问社会或经济福利的工具的应用中(例如招聘系统),专门的指标,例如人口统计学,机会平等和预测平等可以用来评估不同群体是否从模型中获得相似的预测(或收益)。
除非计算领域出现范式转变,否则数字计算机不断增长的处理能力需求不可能无限期地得到满足。神经形态计算从大脑的高度并行、低功耗、高速和抗噪声计算能力中汲取灵感,可能带来这样的转变。来自学术界和工业界的许多研究人员一直在研究材料、设备、电路和系统,以实现神经元和突触网络的一些功能,从而开发神经形态计算平台。这些平台采用各种硬件技术设计,包括成熟的互补金属氧化物半导体 (CMOS) 和新兴的忆阻技术,如基于 SiO x 的忆阻器。本文重点介绍了用于神经形态系统的 CMOS、基于 SiO x 的忆阻器和混合 CMOS-忆阻硬件的最新进展。本文提供了各种设备的新成果和已发表成果,这些设备是为了复制神经元、突触和简单脉冲网络的选定功能而开发的。结果表明,CMOS 和忆阻设备组装在不同的神经形态学习平台中,以执行简单的认知任务,例如对基于脉冲速率的模式或手写数字进行分类。本文设想,所展示的内容将对非常规计算研究界有用,因为它可以深入了解神经形态硬件技术的进步。