炼油业务需要具有保证可靠性的密封材料,包括最大的抗氧化性,即使在极端温度应用中,SIGRAFLEX APX2 箔的氧化速度也比同类产品慢得多,即使在 593°C (1099°F) 下也是如此,并且可以显着延长垫片的使用寿命,提高工艺可靠性并降低长期成本。
产品描述 TC-30X 推荐用于正常应用中的高温传热。它用于发热设备与其安装表面或其他散热表面之间。该产品具有出色的热阻、高导热性,并且在很宽的工作温度范围内几乎不会蒸发。它是一种不易燃的油基化合物,具有抗氧化性,不会导致生锈或腐蚀。
本文讨论的三种材料中,对单片陶瓷的研究最多。单片陶瓷的研究已经进行了很多年,有多个开发项目已经用这些材料制造了用于发动机测试的部件(参考文献 1 至 3)。最近为热机开发陶瓷部件的努力是能源部赞助的涡轮发动机陶瓷应用 (CATE) 和先进燃气轮机 (AGT) 项目,由 Lewis 管理(参考文献 4 至 12)。迄今为止对单片陶瓷的研究表明,这些材料具有良好的高温强度和抗氧化性,但它们易碎且目前可靠性较低。提高可靠性是单片陶瓷材料面临的主要挑战。单片陶瓷的最高工作温度范围为 2400" F 至 3000' F。
基于钛铝化物 (TiAl) 金属间化合物的合金重量轻,且具有优异的高温强度和抗氧化性。因此,在降低燃料消耗等需求的背景下,它们越来越多地用于商用飞机喷气发动机的低压涡轮叶片。神户制钢所一直致力于开发具有国际竞争力的 TiAl 材料制造技术,利用添加高浓度铝时氧溶解度降低的现象设计了一种熔体脱氧方法,并实现了 0.03 质量% 或更低的氧浓度。该公司还通过构建使用冷坩埚感应熔炼 (CCIM) 方法的熔炼和铸造工艺,实现了窄成分范围(Al 含量±0.3 质量%)并提高了铸造产量(与传统方法相比 +25% 或更高)。本文还详细介绍了回收钛废料的技术并描述了未来的前景。
钛合金在500~600℃的高温下具有高强度,可用于飞机的结构件、紧固件和发动机部件,此外还用于汽车发动机部件和/或排气系统,根据其使用情况,需要具有强度、疲劳强度、断裂韧性、抗蠕变性和抗氧化性等各种性能。钛合金的微观结构、织构、化学成分等对疲劳性能的影响主要在飞机领域进行研究,通过引入故障安全和损伤容限设计,提高了可靠性。1-3) 最近,正在进行如下所述的停留疲劳研究以及利用集成计算材料工程(ICME)来一致预测其疲劳寿命的研究和开发。4)日本除了飞机之外,还开发了汽车、消费品(例如高尔夫球杆头)和医疗设备的应用。因此,除了对钛合金的疲劳、裂纹扩展和断裂韧性的基础研究外,5,6)还进行了大量与各自用途所需的性能相关的研究。
在体内使用的位置决定了材料所处的化学环境,进而影响材料性能要求。例如,在直接接触血液时,人体的免疫反应(通过白细胞)会在材料表面形成严酷的氧化环境,因为白细胞会试图吞噬(消耗)外来物质。因此,长期直接接触血液的设备通常需要具有出色抗氧化性的材料。相反,与皮肤接触的设备可能不会经历与血液接触时相同水平的氧化压力,因此具有抗水解(水降解)的材料可能适合制造。此外,与极端 pH 环境(例如胃系统)接触的医疗设备需要能够在化学严酷环境下工作的材料。
本研究使用有限元分析 (FEA) 对涡轮叶片进行全面的热分析和静态分析,以评估两种先进材料的性能:钛合金 (Ti-6Al-4V) 和 Inconel 625。涡轮叶片使用 SolidWorks 建模,并在典型操作条件下使用 ANSYS 进行分析,以评估应力分布、变形、温度梯度和热通量等参数。钛合金 (Ti-6Al-4V) 以其重量轻和出色的强度重量比而闻名,使其成为需要减轻质量的应用的理想选择。相比之下,镍基超级合金 Inconel 625 具有出色的热稳定性、抗氧化性和高温下出色的机械性能。结果强调了这些材料之间的权衡:钛合金在中等温度下表现出更轻的重量和良好的机械性能,而 Inconel 625 在高温环境中表现出色,具有更好的抗热应力和变形能力。这项比较研究为涡轮叶片的材料选择提供了宝贵的见解,从而优化了其在高应力、高温应用中的性能和耐用性。
摘要:通过在薄 AuAl 2 膜中发射表面等离子体 (SP),我们确认金属间化合物 AuAl 2 的异常紫色是由等离子体引起的。我们测量了 SP 色散关系,还使用标准 SP 共振传感技术使用这些薄膜测量了蔗糖溶液的折射率。我们发现平面 AuAl 2 中的 SP 能量约为 2.1 eV,比金低约 0.4 eV,并且该材料具有很强的抗氧化性。这与之前报道的 AuAl 2 介电函数测量结果接近。在此基础上,我们预测 AuAl 2 纳米粒子将具有非常强的、光谱几乎均匀的光吸收率,比标准炭黑高出大约一个数量级。因此,此类粒子可能在光热疗法或太阳能蒸汽生成或等离子体催化等领域中用作遮蔽剂或替代更复杂的吸光金结构。
入围候选人将通过电子邮件/电话收到通知并被邀请参加面试。参加面试不会获得任何 TA/DA 报酬。该职位立即可用。面试将于 2023 年 5 月/6 月举行。任命将与项目同时结束,纯属临时任命。选择将基于资格、经验和面试表现。NITK Surathkal 保留拒绝任何或所有申请的权利,无需说明任何理由。项目摘要:由于磨损、腐蚀和氧化导致表面退化,挑战日益增加,发电厂或飞机工业中使用的大多数工程部件都面临性能下降和产品设计寿命降低等问题。对能够一次性解决许多问题的新型材料的需求是当务之急。如果我们谈论锅炉或燃气轮机,涂层需要具有耐高温侵蚀、腐蚀和抗氧化性。这主要是因为解决任何类型的表面退化都无助于应对挑战环境。众所周知,NiAl 合金具有高温性能。然而,关于它们作为热喷涂涂层的应用研究还不够深入,尤其是当 NiAl 用 cBN 和 SiC 等硬质相增强时。NiAl 具有有序的晶体结构、低密度、高熔点、高硬度、高机械强度、耐高温腐蚀和耐磨性
摘要:硼氢化镁(Mg(BH4)2,本文缩写为MBH)具有优异的重量和体积储氢能力,作为一种有前途的车载储氢介质而受到了极大的关注。尽管MBHα(α)、β(β)和γ(γ)的多晶型物具有不同的性质,但它们的合成均质性可能难以控制,这主要是因为它们的结构复杂性和相似的热力学性质。在这里,我们描述了一种有效的方法,用于在温和条件下(60-190℃,温和真空,2托)从两个最初在氩气和真空下干燥的不同样品开始,在还原氧化石墨烯载体(缩写为MBHg)中获得纯的多晶型MBH纳米材料相。具体来说,我们在 150 - 180 ° C 的温度范围内从 γ 相中选择性地合成热力学稳定的 α 相和亚稳态的 β 相。通过理论热力学和动力学成核模型阐明了相关的潜在相演变机制。所得的 MBHg 复合材料在脱氢和再氢化过程中表现出结构稳定性、抗氧化性和部分可逆形成多种 [BH 4 ] − 物种,使其成为进一步优化储氢应用的有趣候选材料。关键词:硼氢化镁、储氢、相演变、热力学、动力学、还原氧化石墨烯 H