基因编辑技术的进步。它可以通过识别细菌免疫系统并破坏入侵病原体基因,用于植物防御机制以抵御病原体的攻击。通过 CRISPR/Cas9 整合在植物育种方面的进步有助于开发包括对细菌和病毒疾病的遗传抗性的品种。如果在 F1 代中分离出 Cas9/sgRNA 转基因,未来的作物世代可以获得 CRISPR/Cas9 介导的转基因抗性。Cas9/sgRNA 转基因分离使 CRISPR/Cas9 可安全用于植物育种。尽管 CRISPR/Cas9 已被证明是彻底改变植物育种和开发各种抗病品种的绝佳工具,但它对许多植物生理过程的影响仍有待彻底研究。关键词:CRISPR/Cas9;基因编辑;基因组;植物育种;抗性育种。1. 介绍一个主要的挑战是保护作物品种免受当前病虫害的侵害,并改良作物品种以提高产量。抗病作物品种的短缺是农民遭受农业减产的主要原因。为了培育抗病作物并确保粮食安全,培育抗病、抗虫和高产作物大有裨益 [31]。抗性育种利用包括转基因植物基因组编辑在内的各种尖端分子方法,旨在通过提高作物对病虫害的抵抗力来改良作物。借助转基因技术,育种者可以进行物种间杂交,将来自无关植物和其他生物的基因添加到作物中 [31]。为了满足营养需求,不断增长的人口(由于全球人口增长,预计到 2050 年将达到 98 亿)必须生产过量的食物 [4]。植物病原体包括细菌、病毒、真菌和寄生虫,威胁着全球粮食安全 [2,30]。为了提高作物产量并满足世界粮食需求,提高植物的抗性非常重要 [11]。众所周知,植物和疾病之间总是在不断地相互保护 [16,42]。为了抵御感染,植物进化出了“模板触发免疫 (PTI)”和“效应物触发免疫 (ETI)”[17]。PTI 通常由“病原体相关分子模式 (PAMP)”通过“模式识别受体 (PRR)”快速激活 [32,25]。抗性育种在很大程度上依赖于遗传多样性。利用抗性育种理念的一个重要组成部分是开发抗性并为有害基因增加遗传多样性 [43]。这些发现导致了各种基因编辑方法的使用,以创造遗传变异。CRISPR(成簇的规则间隔回文重复序列)/Cas9(CRISPR 相关蛋白)细菌免疫